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Overview

Hardy fields and transseries are complementary approaches to a
“tame” part of analysis. In these lectures | plan to give an
introduction to these two topics assuming no knowledge of either.

Hardy fields |are the natural domain of asymptotic analysis,
where all rules hold, without qualifying conditions.
—Maxwell Rosenlicht

They are one-dimensional relatives of o-minimal structures, and as
such they occupy a central role in the intersection of analysis, model
theory, and dynamical systems. But they have also found applications
in various other parts of mathematics, notably in ergodic theory.

Only introduced in the 1980s, are formal objects which

allow us to model the asymptotic behavior of elements in Hardy
fields, and are often are easier to handle (no convergence
considerations, etc.). They arose independently in analysis (Ecalle:
Dulac’s Problem) and logic (Dahn-Garing: Tarski’s Problem).



Overview

My talks will go hand in hand with those of Tobias Kaiser, who will
focus on the connections between Hardy fields, o-minimality, and
Hilbert's 16th Problem, whereas | will concentrate on model theoretic
and algebraic aspects (but some baby analysis will be involved).

Plan for my lectures

| Hardy fields
Il Transseries
[l Asymptotic differential algebra
IV Model theory of transseries
V Maximal Hardy fields



l. Hardy fields



Germs
Fora € R let

C, := ring of continuous functions [a, +0o0) — R.

For f € Cy (a € R)and g € Cp (b € R) we say that

f and g have the same germ at +oco & f(t) = g(t) forall ¢ > 0.

\. J

This defines an equivalence relation on the set |, C, (disjoint union).
The equivalence class of f € C, is the germ of f at +oc0.

C := ring of germs at +oo of functions f € C, (a € R).

Given a property P of real numbers and f € C we say that P(f(t))
holds eventually if P(f(t)) holds for all ¢t > 0. Thus

f=0 <= f(t) = 0eventually.



Germs

We have a partial ordering on C given by

f<g = f(t) <g(t), eventually.

Naturally we have R C C (as an ordered subfield).
We also define

f<g = [f<g&f#y,
f<eg = f(t) <g(t), eventually,
(= [f<g)

Examples (units of the ring C)

fec* <« f(t)#0,eventually < f<,00r0 <, f.

Thus the germ at +oc of sin z is # 0 in C but not a unit of C.



Germs

Asymptotic relations on C

f<xg = |fl<c|g|forsomece R> gdominates f
f<g &= gelC*and|f|] <c|g|forallc e R”

g strictly dominates f
f<9g <= f<gandg<xf f and g are asymptotic
f~g <= f—-g=<g f and g are equivalent.

(Indeed, =< and ~ are equivalence relations on C respectively C*.)

Examples (with z = germ at +oo of the identity function)
el<z<22<--- <" <z <... 50

ap+a1x + - - + apx™ ~ apx"™ forag,...,an € R, a, #0.

o p2.sinx £z, x#£z? sinz.



Hausdorff fields

DIE GRADUIERUNG

Definition NACH DEM ENDVERLAUF

A subfield of C is called a Hausdorff field.

E. HAUSDORFF

Example
R[z]” := R[z] \ {0} € C* = R(z) C C is a Hausdorff field.

Let H be a Hausdorff field and f,g € H. Then
f#0 = feH*CC* = f>.00rf<c0,
so < restricts to a total ordering on H making H an ordered field.
As a consequence
f41 = |f|>nforeachn = 1<,

so unlike for arbitrary germs, one of f < g or g < f always holds.
Hence < restricts to a dominance relation on H:



Dominance relations

Definition (for a field K)
A dominance relation on K is a binary relation < on K such that
(DO) 1 £ 0;
D) f<f;
(D2) f<xgandg<h=f<h
(D3) f<gorg =< f;
(D4) f < g< fh < gh, provided h # 0;
(D5) f<xhandg<h= f+g<h

Let < be a dominance relation on K. We have the subring

O={feK:fx1}

of K, which is a valuation ring of K: \feK\o N 1/feo\

Each valuation ring of K arises from a unique dominance relation.




Dominance relations
Let K be a valued field: a field with a dominance relation on it. Put
[<g = fxg&gA/[ f<g = fxg9&g<f
The valuation ring O = Ok has a unique maximal ideal, namely
o=og ={feK:f=<1}

___ (equivalence class of f with respect)
Forfe Klet vf:= <to the equivalence relation < on K/°

Two subordinate structures

© The residue field |k = kx := O/o |of K.
The map f — f 4 0: O — ks the residue morphism.

@ The (ordered) value group |I' =Ty := {vf : f € K*}|of K,
with group operation + and ordering < given by

vf+tvg=v(f-g), vf2vg = f<yg.

The map v: K* — I'is the valuation of K.



The dominance relation on a Hausdorff field

Let H be a Hausdorff field, turned into a valued field by the
restriction of the relation <. Then the restrictions of <, =< from C
to H give exactly the relations on H from the previous slide. Also,

O={feH:|f
o={feH:|f
Equip k = O/o with the unique ordering making it an ordered field

and the residue morphism © — k order-preserving. Then there is a
unique embedding k — R, whichisontoif R C H.

< n for somen},
< 1/nforalln > 1},

Example: H = R(z)
ThenT' = Zv(z) withv(z) < 0 = v(1), and

v(p/q) = (degp — degq)u(z)  forp,q € R[z]”.



Algebraic extensions of Hausdorff fields

An ordered field F is real closed if F[i] (i> = —1) is algebraically
closed. Equivalently (Artin-Schreier):

(R1) every f € F~ has a square root in F', and
(R2) each odd-degree P € F[Y] hasazeroin F.

Theorem (essentially Hausdorff)

H*:={y€C: P(y) =0forsome P € H[Y]"}
is a real closed Hausdorff field extending H.

Key part of the proof:

if y € H', then P(y) = 0 for some monic irreducible P € H[Y].
To see this let

P=Yi4+pPYily. ..+ P cH]Y] (P,...,PjecH)

be any monic polynomial in H[Y] of degree d > 1.



Algebraic extensions of Hausdorff fields

Take a € R and representatives of the P; in C,. This yields for t > a:

Pt,Y) == Y4 P (t)YT ... 4+ Py(t) € R[Y].

Lemma 1 (parametrizing the real zeros of P(¢,Y))

Suppose P is irreducible. Then there are y; <e - -+ <e Ym in C such
that the distinct real zeros of P(¢,Y) are y1(¢), . . ., ym/(t), eventually.

Proof.
Take A, B € H[Y]with1 = AP + BP’. Then

1 = A4, Y)P(@Y)+ B(t,Y)P(t,Y), eventually.

Hence P(t,Y') has exactly d distinct complex zeros, eventually.
Now use “continuity of roots”. O




Algebraic extensions of Hausdorff fields

Similarly one shows:

Let P # @ in H[Y'] be monic and irreducible. Then for all y, z € C
with P(y) = Q(z) = 0 we either have y <. zory >, 2.

Suppose now y € H™ with P(y) = 0. Write
P=Q7 --Qy (e >1,Q; € H[Y]distinct, monic irreducible).

Lemmas 1and 2yield y1, ..., ym € C such that
@ eventually, y; (t) < - -+ < ym(t) are the real zeros of
the Q1(t,Y),...,Qn(t,Y) € R[Y] (thus of P(¢,Y));
@ foreachi € {1,...,m} thereisaunique j € {1,...,n} with
Q;(t, yi(t)) = 0, eventually.
Continuity and the connectedness of halflines [a, +00) yields a
single i with y; = y, and thus Q;(y) = 0 for some j. O



Composition

Let g € C be eventually strictly increasing such that ¢ > R, with
compositional inverse ¢g™v € C. The composition operation

f—fog:C—C, (fog)t) :== f(g(t)) eventually,

is an R-algebra automorphism of C, with inverse f — f o g™, which
maps H isomorphically onto the Hausdorff field H o g.

Example
Let H = R(z) and g = x + sinz; then H o g = R(z + sinz).
We say that H is closed under composition if for all eventually

strictly increasing g € H with ¢ > R, we have H o g C H; similarly
we define when H is closed under inverses.

Example

H = R(z) is closed under composition but not under inverses.



Hardy fields

Let’s now bring differentiation into the picture: forr =0,1,2,...

o o= { ring of germs f € C having an r-times continuously
~ | differentiable representative [a, +00) — R (a € R),

and C<® := ﬂC’“, a differential ring

r (with differential subrings C*° and C¥).
Definition (Bourbaki)
A Hardy field is a differential subfield of C<*°.

Analogously one defines C°°-Hardy fields or C“-Hardy fields:
{C¥-Hardy fields} C {C*-Hardy fields} C {Hardy fields}

All these inclusions are proper, but this is not obvious.
Most Hardy fields that occur “in nature” are analytic. Easy examples:

Q € R C R(z) C R(z,e”) C R(logz, x,e") ]




Hardy fields

Let H be a Hardy field. Then H is a Hausdorff field. We view H as an
ordered valued field as explained before. Note:

feH = f €eH = signf'(t)eventually constant,

so f is eventually monotonic, hence , liin f(t) € RU {£o0} exists.
— 00
We have

t
f<g < |fl <clg|forsomece R < lim f) €R,
t=-+o0 g(t)
=g < < clg|foreachc e R~ «— lim M:g.
f=y | f] < clg]
t—+o0 g(t)

Example (for what Rosenlicht meant)
Suppose 0 #£ f, g # 1 are in a Hardy field. Then (I’'Hopital’s Rule):

fsyg <= [f'x¢d



Hardy fields

Let H = R(log z, x, e"). Below is a depiction of the valuation ring
O={heH:h=x1}
of H with its maximal ideal of “infinitesimals”:

o={he€eH:h=<1}.

O

-1 <1 -1



Composition in Hardy fields

Let H be a Hardy field. In order to obtain another Hardy field, not
just a Hausdorff field, via composition, requires some care:

Let ¢ € C! with|¢ == (' € H,{ > R.

Then ¢ > 0, and the R-algebra automorphism
hs B i=ho ™

of C<> maps H onto the Hardy field H° = H o ¢V:
(h%) = (¢~ 'H')°.

NB: the ordered field isomorphism h — h°: H — H°isnota
differential field isomorphism!



Basic extension theorems

Let H be a Hardy field.

Theorem (A. Robinson)
H™ is a Hardy field.

For thislet Py, ..., P;: [a,+00) — Rbe Cl.Fort > aandy € R:

P(t,y) = Po(t) + Pi(t)y + - - + Pa(t)y”,
P'(t,y) := Pi(t) + 2Py (t)y + ~+de(t)yd*1, and
P(t,y) == Fy(t) + P{(t)y + - + Pi(t)y"

Lety € C, satisfy P(t,y(t)) = 0and P'(t,y(t)) # 0forall ¢t > a
then y is C'' with

y'(t) = Pa(ty )) /P (t,y(t)) fort > a
This follows from the Implicit Function Theorem and the Chain Rule.
Hence if y € H™, theny € Ctandy/ € H[y] C H*™. O



Basic extension theorems

Next we turn to simple first-order algebraic differential equations.

Theorem (Mari¢, Singer, 1970s)
Let F,G € H[Y]and y € C' with

y'G(y) = F(y) and G(y) e C*.

Then H y] is an integral domain and has fraction field H (y) C C<°°;
moreover, H (y) is a Hardy field.

NB: we are not claiming that a solution 3y € C! of the differential
equation y'G(y) = F(y) always exists! (Think 3/ = 1 + 32.)

Corollary (Hardy, Bourbaki)
H(R) and H (z) are Hardy fields, and for h € H, so are

H([h), H(e"), H(logh)whenh > 0.



iz
ORDERS OF INFINITY

THE ‘INFINITARCALCUL’ OF
PAUL DU BOIS-REYMOND

by
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Cambridge :
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Hardy’s dream

Hardy defined the field Hypy of (germs of)
logarithmic-exponential functions:
the smallest real closed Hardy field contain-
ing R(z) which is closed under exp and log.
Examples of germs in Hyg:

V2 + 5z — 3z~ ! e
z+1
1 h :l T _ o T 1
sinhz = (e* —e™%) og(x_1>

He made a rather audacious claim:

exponential scales.

No function has yet presented itself in analysis

the laws of whose increase, in so far as they can be stated at all, cannot
be stated, so to say, in logarithmico-exponential terms.



Hardy’s dream

It turns out that Hy g is closed under composition.
But (log = log log )™ is not an LE-function. (Liouville, 1830s)

It is not even asymptotic to any h € Hyg.
(van den Dries-Macintyre-Marker, van der Hoeven, 1997)

Moreover, Hy g is not closed under | (E.g., fe””2 ¢ Hyg). Thus:

Hi g lacks many closure properties that would make it useful
for a comprehensive theory of “tame” asymptotic analysis.

We may modify the definition: for example,

Li(R) — the smallest real closed Hardy field
i(R) ==\ which is closed under expand |.

Note: Li(R) (the Hardy-Liouville closure of R) contains z and is
closed under log: (log h)’ = h'/h for h > 0. (So Hg C Li(R).)



Hardy’s dream

How to go beyond order 1 differential equations?

A cautionary example (Boshernitzan, 1986)

Any y € C? satisfying )
y// + y — ez
is hardian, i.e., contained in a Hardy field.

(But no two distinct solutions to this equation are in a common
Hardy field, and none of them is in Li(R).)



Hardy’s dream

The growth of germs in Li(R) is also quite restricted:

Exponential boundedness: ) =z < e; = e® < ey =€ < ---

For any h € Li(R) there is some n such that & < e,,.

Sjodin (1970) constructed a hardian germ e, € C*° such thate, > e,
for each n. (Such e, is necessarily differentially transcendental.)

Boshernitzan (1984) showed that one can even take ¢, to be analytic,
namely as an analytic solution to the functional equation

eyo(x+ 1) =expoe,,
which was shown to exist by H. Kneser (1940s).

Indeed, every Hardy field extends to an Hardy field H which is
unbounded: there is no ¢ € C with h < ¢ foreach h € H.



Hardy’s dream

Nevertheless, G. H. Hardy’s dream of an all-inclusive, maximally
stable algebra of “totally formalizable functions” (). Ecalle) persists.

In the next lectures we will see partial realizations of this vision.

P. du Bois-Reymond F. Hausdorff G. H. Hardy
(1831-1889) (1868-1942) (1877-1947)
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Overview

Plan for my lectures

| Hardy fields
Il Transseries
[l Asymptotic differential algebra
IV Model theory of transseries
V' Maximal Hardy fields

In my previous lecture, | introduced Hardy fields: differential fields of
germs of real-valued one-variable functions.

We met the Hardy field Hy g of LE-functions and the larger Li(R).

Unfortunately, both are quite small: Hy g is not closed under f and
Li(IR) is not closed under solving 2nd order linear DEs.

Today we will see a kind of workaround via formal series expansions.



Overview

Reminder on Laurent series

The field R((z~1)) of (formal) Laurent series over R in descending
powers of x consists of all series

f(x) = ap2™ +ap 12" '+ taztagtaz a4

infinite part of f infinitesimal part of f
We equip R((z~1)) with the ordering where x > R, dominance

relation with f < 1 < f has infinite part 0, and derivation %.

We naturally have R((z~1/™)) € R((z~'/™")) for m,n > 1, resulting
in the ordered valued differential field

P(R) == | JR(=7"")

n>1

of Puiseux series over R.



Overview

The ordered field P(RR) turns out to be real closed. (Newton)
A consequence: the elements of the Hardy subfield
R(z)™ = {y € C: P(y) = 0 for some P € R(z)[Y]"}

of Hir admit an asymptotic expansion at +oc using Puiseux series:

There is an embedding
R(z)* — P(R)

of ordered valued differential fields.

This embedding cannot be extended to an embedding Hyp — P(R):

exp z and log x do not make sense in P(R).




Overview

Question

Can we enlarge P(R) in a natural way to an ordered differential field
of formal series which embeds many more Hardy fields (like Li(R))?

The general idea:
start with R () and iteratively close off under exp, log, and
infinite summation.

In this lecture we will see how to make this idea precise and
extend P(R) to the ordered differential field | T | of transseries:

" e et g +5a:\/§—(log o) 424 2 e

This ordered differential field turns out to be closed under f and
under solving inhomogeneous order 2 linear differential equations.

This will give us hope that something similar can also be achieved on
the Hardy field side.



Il. Transseries



Well-based series

Let (97, <) be a linearly ordered set (of monomials). Call & C I
well-based if there is no sequence

mpg<m;y <mo < :-- in G.

Denote a function f: 9t — R as a series ) | fmm where f, = f(m),
m

supp f :={m: fn # 0} C M.

with support

Then

[ R[] := {f: M — R : supp f is well-based} ]

is a subspace of the R-linear space R™. For f € R[[9]]7 let

0(f) := maxsupp f

be the dominant monomial of f.



Well-based series

From now on assume (91, -, <) is an ordered abelian group.

Then, with multiplication of well-based series defined by

fg= Z( > fml-gmg)m,

m mip-mo=—m

we obtain an R-algebra R[[9]].

Take a multiplicative copy z® of (R, <, 0, +) with isomorphism
r— 2" R — ok
Then z® has the ordered subgroups zZ C z?, and

R(z"") = Rllz%]] € P(R) C R[l2"]] C RI[z"]].



Summing well-based series

A family (fx) in R[[91]] is said to be summable if

@ U, supp fy is well-based; and

@ for all m there are only finitely many A with m € supp f.
We then defineits sum f = 3", fA € R[] by fu =D fam-

EINPES

Given f € R[[91]], the family (fym) is summable with sum f.

1
If f <1, then (f") is summable with sum ——

1—f

Summability has various nice properties (e.g., rearrangement).
As a consequence of @, R[[M]] is a field: write f € R[[DM]]” as

f=cm(l—¢) wherece R* ,meMec<1;
then f~! :c_lm_lzen.
n



Hahn fields
Turn R[[91]] into an ordered valued field satisfying, for f # 0:

>0 «— fa(f)>0,
<1 <= of)<1

The ordered valued field extension R[[91]] of R is called a Hahn field.
Recall the valuation ring, its maximal ideal, and the residue field:

O:={f:f=x1}, o:={f:f=<1}, k:=0/o.

The residue morphism ©@ — k restricts to an isomorphism R k.
The valuation R[[907]]* — T restricts to an isomorphism 9t — T
of groups, with

m<n <= oum_2>on

Next we consider directed unions of Hahn fields: the ordered field T
will be obtained as such a union.



Directed unions of Hahn fields
Let (91;);c; with I # () be a family of ordered subgroups of 9
satisfying 0t = (J, ;. Assume that (90;) is directed:
for all ¢, j there is k with 9)t;, 90t; C 9.
We then obtain the ordered valued subfield
K = U, R[] C R
Example: P(R) = U,z R[[z/™2)] C R[22

A family (fy) in K is summable if there is an ordered

subgroup & C Mt such that R[[B]] C K, all f\ € R[[&]], and (fy) is
summable as a family in R[[&]]; then ) ", f\ € K is defined.

(NB: if I is countable, then each such & is contained in some 9t;.)

An R-linear map ®: K — L is strongly linear if for every summable
family (fx) in K the family (®(f»)) is summable in L, and

(X)) =25 B(f)

E.g., given g € K, the operator f — fgon K is strongly linear.



Analytic structure

Lett = (¢1,...,t,) be atuple of distinct variables and let
F = F(t) =Y Ft' €R[[t1,... t]]

be a formal power series over R. Here
v=(v1,...,v,) € N", F, e R, t o=t

For any tuplee = (e1,...,¢, ) of elements of ok the family (F,&") is

summable, where ¥ := &7* - - - e¥» (“Neumann’s Lemma”). Put

F(e) == ZFyg” € Ok.

Using Taylor expansions this allows us to extend each restricted
analytic function R” — R to amap K" — K, and hence turn K into
an extension of the L, -structure R,,,. If all 9J1; are divisible, this is
an elementary extension.

However, when trying to define an extension of the real exponential
function to Hahn fields we run into problems:



Exponential fields

An exponential ordered field is an ordered field E equipped with an
exponentiation, that is, an embedding

e€xp: (E7+7 g) — (E>7 7<)

If exp(F) = E~ then we call E a logarithmic-exponential ordered
field, and denote the inverse of exp by log: E~ — E.

Examples

The ordered field Li(R) with exponentiation f — ef, and its
logarithmic-exponential ordered subfields Hyg and R.

We can’t turn R[[z®]] into a log-exp ordered field.
(Kuhlmann-Kuhlmann-Shelah: not even R[[92%]] when 90t £ {1}.)
To remedy this, we extend R[[z®]] in two steps:
@ first close off under exp to obtain the exponential ordered
field Ty, of exponential transseries;
@ then close off under log to arrive at the log-exp ordered field T
of transseries.



Construction of Ty,

Let (E, A, B, exp) be a pre-exponential ordered field:
@ L is an ordered field;

® A, B C E are additive subgroups of ' suchthat E = A® B
and B convex in E;

© exp is an ordered group embedding (B, +,<) — (E~, -, <).
(Think of exp as a partially defined exponentiation.)

Example
E = R[zR], A =R[z*"]], B = O0r = R} og,

n
exp(r-l—s):er-z% (reR,e<1).

n

In the following we suppose E' = R[[90]].




Construction of Ty,

We then define a pre-exponential ordered field (E*, A*, B*, exp*)
extending (F, A, B, exp) such that E C B* = domain of exp*:

1.

Take an ordered group isomorphism exp*: A — exp*(A) onto
a multiplicative copy of A. Order 9* = 9 x exp*(A) so
that 9t and exp*(A) are ordered subgroups of 9t* and 9t is
convex in t*.

Set E* = R[] = R[[Mexp*(A)]] 2 E = R[[M]].

Put 0o* := R[[Mexp*(A<)]]. With

AT = R[[Mexp”(A7)]],

B* = R[[Mexp*(AS)]] = E®o0* = A B® o
we have £* = A* @ B* and B* is convex in E*.

Extend exp* to exp*: B* — (E*)~ by

exp*(a+b+e) = exp*(a)exp(b)->%; (a€ A, be B, c€o").



Construction of Ty,

Recursively define

(Eo, Ao, Bo, expy) = (R[[z],...),
(En, A, Br, expr),

(En+17 AnJrl: Bn+17 expn—i-l) :

and put

Texy = R[HE = U, Bn.

Then Teyp, equipped with the common extension exp: Texp, — Te>xp
of the exp,, is an exponential ordered field extension of R.

D Texp is not a logarithmic-exponential ordered field:
Tg(p =z exp(Texp) Wwith x ¢ exp(Texp).

Successively replace x by new variables /1 = log x, {5 = loglog «, ...



From Teyp, to T

Formally, we introduce a strongly linear isomorphism
o fl = Fl6): R[F)® = R{G)°

of ordered exponential fields.

We identify R[[¢X]]" with its image under the strongly linear
exponential ordered field embedding

R[[Z)E — R[[£E,))®  with £ s exp(rf,41) foreachr € R.
So we have inclusions
Texp = R[[G51]° € RIF® € R[GE € -+

of exponential ordered fields, and we obtain the log-exp ordered field

[ T = R[[z"]"" = U, RI[£:]]" ]




Features of T

By construction, T is an increasing union of increasing unions of Hahn
fields; it can also be represented as a directed union of Hahn fields.

Upward and downward shift

These are the unique strongly linear automorphism f +— f1 of the
exponential ordered field T that sends x to e*, with inverse f — f].
Their nth iterates are f — f1", respectively, f — fln.

Thus x|, = ¢, and for each f € T thereis an n with f1,, € Teyp.

Example (relevant for later)

1 1 1
L S Y |
Lo - loly * Lol1lo oer g



Features of T

The sequence
<l <lhi<ly=zxz=e)<er<ey<---

is coinitial and cofinal in T>® = {f € T : f > R}.

If 01 is divisible, then the ordered Hahn field R[[91]] is real closed.

As a consequence, T is real closed, and thus (by Tarski), an
elementary extension of the ordered field R.

Indeed, by work of van den Dries-Macintyre-Marker (1994), T is also
an elementary extension of the L,,, exp-structure RR; in particular, of
the exponential ordered field R.

But T also has a differential structure:



Differentiating transseries

A derivation on a field K isamap d: K — K such that

Af+g) =0(f) +alg), d(fg)=0(f)g+ fi(g) forallf,ge K.

A differential field is a field K with a derivation 0 on K. The constant
field of a differential field K is the subfield ker 0 of K.

Theorem (Ecalle, v. d. Dries-Macintyre-Marker, v. d. Hoeven, 1990s)

There is a unique strongly linear derivation f — f’ on T such that

z =1 and (exp f) = f'exp f forall f € T.

The differential field T has some nice (but non-trivial) properties:
@ its constant field is R;
@ every f € T has an antiderivative in T.

(= forallg,h € Tthereisay € T* withy + gy = h.)



Sample computations in T

1. The inverse of e* +x

L _ ! =e " Z(—l)”(w e “)"

e?+zr e*(l+ze®)
n

2. The logarithm of sinh = 3 (e” —e ™)

—2nz

log(sinh) = log <%(1 — e_2x)> =z —log2— Z ¢

mn
n>1

3. Integrating 1/log x

/
x n! 1
(logm En: (log x)”) ~ logx




Embedding Hardy fields into T

Theorem (A.-v. d. Dries, 2002)

Let H be a Hardy field with H O R. Then every embedding H — T
of ordered differential fields extends to an embedding Li(H) — T.

Thus there is an embedding of Li(R), and hence of Hy, into T.

We may view an embedding H — T as a formal expansion operator
and its inverse as a summation operator.

Example

The germ of the error function

erf: R - R, erf(t): / = ds
\/_

liesin Li(R). Any embedding Ll(R) — T maps it onto the transseries

1-3.5---(2n— 1)
o <1+Z @) )

n>1




Embedding Hardy fields into T

E. Kaplan (2022) has generalized the theorem above. A special case:
Say that a Hardy field H is L,,-closed if for each restricted analytic
function F': R® — Rand g1, ...,9, € H, the germ of the function

t> F(gi(t),...,gn(t))

is also in H. We then turn H into an £, ,-structure in the natural way,
and if H is also closed under exp, to an L,y exp-structure.
Let

Li(R).. — the smallest £,,-closed Hardy field
i(R)an =1 which is closed under exp and |.

. _______________________________________________________|
There is an embedding Li(R)., — T of ordered differential fields
which is also a morphism of L.y, exp-structures.

(= the Hardy field of germs of functions definable in Ry exp
embeds into T: van den Dries-Macintyre-Marker.)



Some questions about T

The differential field T turned out to be amenable to a computational
treatment: J. van der Hoeven (~ 2000) gave a quasi-algorithmic
method for solving algebraic differential equations like

P(y’y/7,..,y(n)):0 (P e R[Yy,Y1,...,Yy,])

in T. This motivates the questions:
@ Can we do something similar in Hardy fields?
® Even more ambitiously: what are the first-order logical
properties of the differential field T? Or of “sufficiently rich”
Hardy fields?
® Can we construct expansion/summation operators
encompassing (exponentially bounded) Hardy fields bigger
than Li(R)?
In later lectures we will see some answers to these questions.
Before we finish, we point out some further structure on T.



Composition

Let f range over T and g over T~R,

Theorem (see v. d. Dries-Macintyre-Marker, 2001)

There is a unique operation
(f,g) = fog: TxTR T

such that for each g, the map f — f o g: T — T is a strongly linear
embedding of exponential ordered fields with x o g = g.

This operation satisfies f o x = f and f o e® = f1, and obeys

(fog) =(f'og)-g  (ChainRule).

Moreover, o turns T>® into a group with identity element x.

V. Bagayoko has started to explore the solution sets of one-variable
equations in this and related groups.



Composition

Example (Lambert W function: compositional inverse of x e*)

An asymptotic expansion for W is given by a transseries

(logy )"
W ~logx — logy x + m>§>1 Cmn (log )77

log, x

= logx — logy x + log 7
(logy z)* logy x
2(log )2 (logz)2
(logyx)®  3(logyz)® = logy
3(logz)3  2(logz)? ' (logx)3

for certain coefficients ¢,,,, € Q which are given by an explicit
formula, and logy x = log log x [= ¢2]. (de Bruijn, Comtet)

(This transseries is actually absolutely convergent for large ©+ — 00.)



L. Euler H. Hahn
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In the last lectures, we met a variety of interesting differential fields
(of transseries, germs of functions, ...) equipped with asymptotic
structure, such as ordering and dominance.
We will now introduce an algebraic framework which unifies these
examples and helps to unravel their model-theoretic properties.
All based on joint work with (one or both of)

L. van den Dries and J. van der Hoeven.



lll. Asymptotic differential algebra



The setting of differential algebra

Let K be a differential field (of characteristic 0), with derivation o.

As usual

fr=af), " =), ..., M=), ...

The constant field of K is C' = C :=kerd = {f € K : f' =0}.
For f # Olet T := f'/f be the logarithmic derivative of f. Note

(f-9)t=fT+g"  forf,g+#0.

The ring of differential polynomials (= d-polynomials) in Y7, ...,Y,
with coefficients in K is denoted by K{Y7,...,Y,}. E.g.

PY)=Y¥")?+Y"Y® —1eQ{Y} (n=1Y=Y).



The setting of ordered differential algebra

An ordered differential field is a differential field K equipped with
an ordering making it an ordered field. We can then also turn K into
a valued field with dominance relation

f=gg = |f| <c|g|forsomeceC.

Examples

Each Hardy field H is an ordered differential field with Cyg C R,
and for g # 0, we have:

. f@) @) _
FRo = S 0T e T
~ ) o )
ng@tE?wmeR,ng@t_lggloom—l

The dominance relation < on the ordered differential field T
from above agrees with the one on T qua valued subfield of a
Hahn field R[[991]].



The T-Conjecture

This is the idea that T is a “universal” domain for asymptotic
differential algebra:
[The differential field T] marks an almost impassable hori-
zon for “ordered analysis”. (This sector of analysis is in some
sense “orthogonal” to harmonic analysis.) —J. Ecalle

To formulate a precise version, we view ordered valued differential
fields model-theoretically as structures with the primitives

0, 1, +, x, o (derivation), < (ordering), =< (dominance).

The T-Conjecture

T is model complete.

g% (The inclusion of < is necessary.)

Model completeness of T can be expressed geometrically in terms of
systems of algebraic differential (in)equations. (Similar to Gabrielov’s
“theorem of the complement” for real subanalytic sets.)



The T-Conjecture
For this, define a d-algebraic set in T" to be a zero set
{yeT: Pi(y) == Puly) =0}

of some d-polynomials P, ..., P, € T{Yy,...,Y,}.

An H-algebraic set in T is the intersection of a d-algebraic set in T™
with a set

{yi,...,yn) €T" 1 y; < Lforalli € I} wherel C{1,...,n}.

The image of an H-algebraic set in T, for some n > m, under the
natural projection T — T™ is called sub-H -algebraic.

Model completeness of T means (almost):
the complement of any sub-H-algebraic set in T™ is again
sub-H-algebraic.
(A strengthening of model completeness is quantifier elimination: it
describes sub- H-algebraic sets using additional primitives on T.)



The T-Conjecture

To prove model completeness results algebraically, we need to
develop an extension theory for structures with the same basic
universal properties as the structure of interest.

This strategy can be employed to analyze the logical properties of
classical fields like C, R, C((?)), ...

We do something similar for T.
For this we define the class of H-fields (H: Hardy, Hausdorff, Hahn.)

The goal then is to show that the class of existentially closed H-fields
is axiomatizable in first-order logic, and contains T.

If successful, we have model completeness of T.
Here, an H-field H is existentially closed if every system of algebraic

differential equations and asymptotic conditions which has a solution
in some H-field extension of H also has a solution in H.



H-fields
These are ordered differential fields in which ordering, dominance,
and derivation interact in a certain nice way:

Definition

Let H be an ordered differential field with constant field C' = C'y.
Then H is an H-field if

H) f>~1 = ff>o;
(H2) fx1 = f~cforsomece C*;
H3) f<1 = f'<1.

g?? (The usual definition of “H-field” doesn’t include (H3).)

Examples

e every Hardy field H O R;
® the ordered differential field T;
® each ordered differential subfield of an H-field H containing C'.



H-fields

H-fields are part of the (more flexible) category of
“differential-valued fields” of Rosenlicht (1980s).

Many basic properties of the dominance relation valid in Hardy fields
are consequences of the H-field axioms.

For example, let H be an H-field; then:

I’Hopital’s Rule
If0# f,g % Lithenf<g < f'<¢.




H-fields

Besides being real closed H-fields, T and Li(R) are Liouville closed:
We call a real closed H-field Liouville closed if it satisfies
Vigdyly#0&y + fy=g].

A Liouville closure of an H-field H is a minimal Liouville closed
H-field extension of H.

Theorem (A.-v. d. Dries, 2002)

Every H-field H has exactly one or exactly two Liouville closures, up
to isomorphism over H.

What can go wrong when forming Liouville closures may be seen
from the asymptotic couple of H.

To explain this, let v: H* — T be the valuation of H. We have a map
y=vgr =v(g): F¢:F\{O}—>F.

(As a consequence of I'Hopital.)



Asymptotic couples

The pair consisting of I" and the map v — ' := 7/ — v is called the
asymptotic couple of H. Always (I'*)T < (I'")’.

L1




Asymptotic couples

Exactly one of the following statements holds:

@ (I'7)! <~ < (I'") for a (necessarily unique) ~.
We call such yagapin H.

® (I'7) has a largest element.
We say that H is grounded.

@© (I'7)' has no supremum; equivalently: T = (T'7)’.
We say that H has asymptotic integration.

H=0C;
H = P]I‘exp;
H = T (or any other Liouville closed H).



Asymptotic couples

Exactly one of the following statements holds:

@ (I'7)! <~ < (I'") for a (necessarily unique) ~.
We call such yagapin H.

® (I'7) has a largest element.
We say that H is grounded.

@© (I'7)' has no supremum; equivalently: T = (T'7)’.
We say that H has asymptotic integration.

In @ we have two Liouville closures: if v = vg, then we have a choice
when adjoining | g: make it = 1 or < 1.

In @ we have one Liouville closure: if vg = max (I7)f, then [ g = 1
in each Liouville closure of H.

In @ we may have one or two Liouville closures.



A-freeness

[ Every H-subfield H D R of T has a unique Liouville closure. ]

The intrinsic reason for this: Suppose H 2 R({y,¢1,...)andy € H

(or rather vy)isagapin H: |(I'<)! <wvy < (')

Then v/, iscofinalinl'= andv(1//,) iscoinitialin I'~,
hence /U(Z'L) is cofinal in (I'<)T and v((1/¢,,)") is coinitial in (I"~)’.

1 ‘
) ’ (1/171)/ = ’Yn/en,

R

Now Yo = lp = o

hence Yo =Y = (1/0,) =Y /ly
T

and since A, := _ 1 + — ! +-+ !
m «— Yn_ EO 60‘61 Eogl..-én,
we get
1 1 1
A=yl = f-l- 44t 4. tsmallerterms £

by ol Colrlo boly - by



A-freeness

This fact about T translates into a V3-statement about H-fields:
Definition
An ungrounded H-field H is A-free if there is no A € H such that

A—git<gf foreachg > 1in H.

Theorem (A. Gehret, 2017)

An H-field has a unique Liouville closure < it is grounded or A-free.




w-freeness

This is a stronger, and more robust, property than A-freeness.

Just like A-freeness has to do with solving first-order linear
differential equations, w-freeness is connected to order 2 equations:

Examples (2nd order linear)

® y” = —yhas no solution y € T*;
e o = xy has two R-linearly independent solutions in T:

. an
b= 2771/2331/4 Z

1= e— _1\nn _ 2.3/2
1B = /2174 Zn:( 1) e (€ = 52°/%, an €R).



w-freeness

Let H be a Liouville closed H-field. For f € Handy € H*,

L'+ fy=0 = —dffy=f = wy)=Ff

where‘w(z) = — (27 4 2?) ‘

(a relative of the Schwarzian derivative).

Hence

wH)={f€H: 4"+ fy=0forsomey € H*}.

Thecase H =T

The sequence

wh,) = ! + ! 90 T !
" 2 (olh)? (Loly -+~ ln)?

is cofinal in w(T). Thus w(T) has no supremum in T.



w-freeness

T
_ 1 1
O=7 T wmr T
T —
_ — 1 4 1 4 ...
0 Y= 0y A= Lo +4041 +
w

Once again, this can be translated into a statement about H-fields:

Definition
Call an ungrounded H-field H w-free if there is no ® € H with

o — W(—gﬁ) =< (g]t)2 foreachg > 1in H.



o-freeness

o-freeness is amazingly robust, and prevents deviant behavior:

If H is w-free, then
® sois every differentially algebraic H-field extension of H;
e [ is A-free, and hence has only one Liouville closure; ...

The main engine behind this:

Newton polynomials of one-variable differential polynomials over
o-free H have a very simple shape.

The definition of Newton polynomials relies on compositional
conjugation.



Compositional conjugation

In H = T every differential polynomial P € H{Y} can be
transformed, by applying finitely many transformations

f = ft=foe" = f(e") (upward shift),
into one with a “dominant part” of the form
(co+c1Y +--+e, Y™ - (Y (co,.-.,cm €R).

General H-fields H have no operation like f — f1.

But there is a substitute:

Compositional conjugation (in a d-field X with derivation 9)

e Replacing d by =19 (¢ € K*) yields a new d-field K¢, and
* rewriting P in terms of ¢ 19 yields P? € K{Y} such that

P?(y) = P(y) forally € K.



Compositional conjugation

Compare with composition in a Hardy field H:

Reminder from Part |

Let / € H>® and ¢ := . Then ¢ > 0, and we have an ordered field
isomorphism .
h— h°:=hot™: H — H°.

This is not a differential field isomorphism: since
(hO)l — (qb_lh/)o,

it is rather a differential field isomorphism H® — H°.



Compositional conjugation

The operation P — P? can be viewed as a triangular automorphism

of the K-algebra K{Y} = K[Y,Y’,...] = K*{Y}:
Yo=Y
(Y")? = ¢Y”

(Y//)¢> _ ¢2Y”+¢)/Y/
(Y///)¢ _ ¢3y’” +3¢¢lyl/+¢lly/’

Such triangular automorphisms can be treated with Lie theoretic
methods: every triangular automorphism o of K{Y} can be
represented by an upper triangular matrix M, € KN*N whose
matrix logarithm log(M, ) represents a K -linear derivation of K{Y }.



Newton polynomials

Suppose now H is an ungrounded H -field.

We then only use active ¢, those for which H? is again an H-field:

] 6>0and¢ = b forallh < 1. \

Theorem

Let P € H{Y'}7. Then there exists Np € C{Y}7 so that for all
sufficiently small ¢:

P? = 9Np + R, de H*, R<0D.
We call Np the Newton polynomial of P.

@ (We omitted technical hypotheses to make Np well-defined.)



Newton polynomials

It is not always the case (like in T) that Np € C[Y](Y”)N. Consider

P=N-0-(Y)? where N :=2Y'Y" —3(Y")%

Then for ¢ =1, = m
P? = ¢'N + (2¢¢" — 3(¢)* — 0¢?) -(Y")?
(W(hy) — )¢
A

_ 1 2
where W( n) m—m+<¢

and so P? ~ ¢*N, thus Np = N. However (!):

Theorem
H o-free <= Np e C[Y](Y)Nforall P € H{Y}”.

The proof relies on the Lie algebra approach to compositional
conjugation mentioned above.



Newtonianity

The Newton degree of P is defined as‘ ndeg P := deg Np. ‘

If H is w-free, then Np (and hence ndeg P) doesn’t change if we
pass from H to an H-field extension.

Definition
We say that H is newtonian if every P € H{Y}” with ndeg P = 1
hasazeroy < 1in H.

T is newtonian (as a directed of grounded Hahn H-subfields).

This is the most significant asymptotic-differential-algebraic property
of T, and the appropriate differential version of the henselian
property of valuation theory.



Newtonianity

It guarantees, for example, that the Painlevé Il equation
y' =2 +ry+a (e € R)
has a solutionin y < 1in T: with
P:=Y"-2Y®—2Y —acT{Y},
for ¢ < 1 we have
P? = ?Y" + 'Y —2Y2 —2Y —a where ¢, ¢’ <1 < z.

Thus Np € R*Y,sondeg P = 1.
(Itis known that Phasazeroy < 1inR(z) C Tiffa € Z.)



Newtonianity

We chose the adjective “newtonian” since this property allows us to
develop a Newton diagram method for differential polynomials over
H-fields (among others).

0 N 1
=]y x*‘vy'lf Al

y
- 7 P g |
x Jrﬂryy‘xy"}y%
oaly ‘.Y‘IAY 15 A

(from a letter of Isaac Newton to Henry Oldenburg, Oct. 24, 1676)



Newtonianity

Theorem (sample application of differential Newton diagrams)

Every odd-degree differential polynomial over a real closed w-free
newtonian H-field has a zero.

For all this (and more), see our book —

Don't forget to check out
https://tinyurl.com/ADH-errata



https://tinyurl.com/ADH-errata

Outlook

In the next lecture we will discuss further properties and uses of
newtonianity.

We will then combine the three crucial features of T,

’ Liouville closedness, ®-freeness, and newtonianity

to unravel (a more precise version of) the T-Conjecture, and describe
its various consequences.

Then we will return to the world of Hardy fields.
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IV. Model theory of transseries



Reminder about yesterday

From the last lecture recall:

An H-field is an ordered differential field H such that:
H) f>=1 = ff>o;
(H2) f <1 = f~cforsomece C*,;
H3) f<1 = f'<1.

Examples: ordered differential subfields O R of T; Hardy fields O R.

Let H be an H-field, f,g € H*. We have| fT = ¢ if f,g < 1.

Three flavors of H-fields
® grounded: thereis an f < 1 suchthat ¢' = fTforall g < 1;

* with a gap: thereis ay with fT =y = ¢/forall f,g < 1;
e asymptotic integration: for each f there is g with ¢’ < f.




Reminder about yesterday

We call a real closed H-field Liouville closed if all equations

y=f and zl=g(z#£0)
have solutions. (Examples: T.)

A Liouville closure of an H-field H is a minimal Liouville closed
H-field extension of H. (Example: Li(H) for a Hardy field H D R.)
Every H-field H has one or two Liouville closures.

A nice property of an ungrounded H-field H that guarantees:

® H has asymptotic integration and a unique Liouville closure;

* the Newton polynomial of each P € H{Y}7 has a simple
shape.

o-freeness is preserved under d-algebraic H-field extensions:
an H-field extension E of H is differentially algebraic (d-algebraic) if
for each y € E thereisa P € H{Y }* with P(y) = 0.



Reminder about yesterday

Let H be an ungrounded H-fieldand C = Cy,I' =T'y.
Let P € H{Y}”.

® Newton polynomial Np € C{Y}* of P:

for sufficiently small (“active”) ¢,
P? ~d-Np whered =04 € H*;

® Newton degree of P: ndeg P := deg Np.

We say that H is newtonian if every P € H{Y }* with ndeg P = 1
has a zero y < 1. (Mostly useful in combination with w-freeness.)

Our first aim: \ to extend H to a newtonian H-field. \




Newtonization

An H-field extension E of H isimmediateif Cp, = C and ' =1I":
for each g € E* thereisan h € H* with g ~ h.

One can show that H has an immediate H-field extension which is
maximal, i.e., has no proper immediate H-field extension.

The proof of the next important fact uses the full machinery of
Newton diagrams, including its most complicated part (differential
Tschirnhaus transformations) to deal with “almost multiple zeros”.

Theorem (characterization of newtonianity for ®-free H)

H has no proper immediate d-alge-

H is newtonian <—
{ braic H-field extension.

(We assumed T" divisible; general version is due to N. Pynn-Coates.)



Newtonization

The previous theorem implies that each H-field can be embedded
into a newtonian H-field. We now want to do this in a minimal way.

Definition

A newtonization of H is a newtonian extension of H which embeds
over H into each newtonian extension of H.

Theorem

Suppose H is ®-free. Then H has a newtonization. Moreover, if N is
a newtonization of H, then

e N is an immediate extension of H;

® no proper ordered differential subfield of N containing H is
newtonian.

We note the following important consequence.



Newton-Liouville closure

Corollary

\
&

If H is o-free, then H has a newtonian Liouville H
closed H-field extension H™ which embeds
over H into each newtonian Liouville closed
H-field extension E of H. H

(By alternating newtonization with taking Liouville closures.)

We call H™! the Newton-Liouville closure of H.
(Unique up to isomorphism over H.)

The Newton-Liouville closure H™! of H is d-algebraic over H, and its
constant field is real closed and algebraic over H.



Closed H-fields

Definition

Call an H-field closed if it is Liouville closed, m-free, and newtonian.

Thus every H-field extends to a closed one, and T is closed.
An important fact characterization of closed H-fields:

Theorem (“no new constants”)

C'is real closed and H has no proper
Hisclosed <= { d-algebraic H-field extension with
constant field C.

(For a generalization of =, and caveats about applying the theorem,
see Relative differential closure in Hardy fields, arXiv:2412.10764.)

Example

The H-subfield R(¢y, ¢1, . ..) of T is w-free. Its Newton-Liouville
closure inside T is T4 := { f € T : f is d-algebraic over Q}.



Proof of the T-Conjecture

let L={0,1,+, -,9,<,<}andlet
T = the L-theory of closed H-fields,

that is, the £-theory axiomatized by
® the axioms for Liouville closed H-fields;
® the w-freeness axiom; and
® the axiom scheme of newtonianity.

T-Conjecture, revised version

T is model complete.

This can be phrased in terms of sub-H-algebraic sets like the first
version of the T-Conjecture. Alternatively: if H is a closed H-field,
then each system of finitely many conditions

P(Y) 0Q(Y) { where P,Q € H{Y} = H{Yi....,Y,} and o

is one of the symbols =, #, <, <, %, <,
which has a solution in some H-field extension of H, has one in H.



Proof of the T-Conjecture

Theorem (main result of our book)

The refined T-Conjecture is true!

We explain the proof strategy. By a model completeness test of
A. Robinson, it suffices to solve the following embedding problem:

Let H be an w-free H-subfield of some closed E.
Let i be an embedding of H into a “very rich”

closed H-field E*. Then i extends to an
embedding £ — E*.

We first make some preliminary reductions. First, we can extend i to
an embedding H(Cg) — E*. Since H(CE) is d-algebraic over H, it
remains ®-free.



Proof of the T-Conjecture

Theorem (main result of our book)

The refined T-Conjecture is true!

We explain the proof strategy. By a model completeness test of
A. Robinson, it suffices to solve the following embedding problem:

Let H be an w-free H-subfield of some closed E
such that C' = Cg.

Let i be an embedding of H into a “very rich”
closed H-field E*. Then i extends to an
embedding £ — E*.

Next, suppose thereisay € E with C <y < H>C. Then H(y) is
grounded, but it extends to an w-free H-field

“H{y)o = H(y,logy,loglogy,...)"
in a canonical way. Now i extends to an embedding H (y), — E*.



Proof of the T-Conjecture

Theorem (main result of our book)

The refined T-Conjecture is true!

We explain the proof strategy. By a model completeness test of
A. Robinson, it suffices to solve the following embedding problem:

Let H be an w-free H-subfield of some closed E
such that C = Cg and H>C is coinitial in E=C.

Let i be an embedding of H into a “very rich”
closed H-field E*. Then i extends to an
embedding £ — E*.

This has the nice consequence that now we don’t need to worry
about preserving m-freeness anymore: every differential subfield
of E containing H is an w-free H-subfield of F.



Proof of the T-Conjecture

Theorem (main result of our book)

The refined T-Conjecture is true!

We explain the proof strategy. By a model completeness test of
A. Robinson, it suffices to solve the following embedding problem:

Let H be an w-free H-subfield of some closed E
such that C = Cg and H>C is coinitial in E>C.

Let i be an embedding of H into a “very rich”
closed H-field E*. Then i extends to an
embedding £ — E*.

Replacing H by H™ C E we can further assume that H is closed.
Theneachy € E'\ H is d-transcendental over H, and the
isomorphism type of H(y) over H is (essentially) determined by the
cut HSY ={f € H: f < y} of yin the ordered set H. O



Consequences of the T-Conjecture, 1

Corollary

@ any two closed H-fields are elementarily equivalent; hence
® T is decidable.

Proof.

Part @ is an immediate consequence of the T-Conjecture and the
fact that T92 embeds into every closed H-field. Part @ follows
from @ and Godel’'s Completeness Theorem. O

An instance of @: there is an algorithm which, given d-polynomials
Pl, Ce ,Pm c Q($){Y1, Ce ,Yn},

decides whether P, (y) = --- = Py, (y) = 0 for some y € T".
(Not true for Texp!)



Strengthening the T-Conjecture

Recently E. Kaplan established a version of the T-Conjecture when T
is also equipped with (¢, f) — f¢: R x T~ — T~.

(But we do not know whether a version of the T-Conjecture holds
when T is expanded to an L, cxp-structure.)

We remark that we obtained the T-Conjecture in a strengthened
form (quantifier elimination in a slight extension of our language £).

Rather than explaining this strengthening, we will discuss a few of its
remarkable consequences for T.



Consequences of the T-Conjecture, 2

Corollary

@ T iso-minimal at +occ: if X C T is sub-H-algebraic, then there
isan f € T with (f,4+00) C X or (f,+00) N X = 0.

® All sub-H-algebraic subsets of R™ C T" are semialgebraic.

Special case of @: if P € T{Y}, thenthereare f € Tando € {£1}
with sign P(y) = o for ally > f. (Related to results of Borel, Hardy.)

An illustration of @: the set of (co, ..., c,) € R""! such that
cy+eay +Fey™ =0 0#£y=<1

has a solution in T is a semialgebraic subset of R?*1.



Back to Hardy fields

We already learned: each Hardy field H extends to the Liouville
closed Hardy field Li( H (R)). With more work (arXiv:2404.03695):

H also extends to an ®-free Hardy field O R.
Using Newton-Liouville closures (and results from our QE), this yields:

Corollary (extending expansion operators)

Let E be a d-algebraic Hardy field extension of a Hardy field H. Then
every embedding H — T extends to an embedding £ — T.

As a consequence of this and a theorem of Lion-Miller-Speissegger,
the Hardy field of the Pfaffian closure of the ordered field of
real numbers embeds into T92.

Question

Let H(R) be the Hardy field of an o-minimal expansion R of the
ordered field of reals with Pfaffian closure Pf(R). Does each
embedding H(R) — T extend to an embedding H (Pf(R)) — T?



Closed Hardy fields

It is natural to wonder:
are there Hardy fields © R which are closed H -fields?

Definition
A Hardy field is d-maximal if it has no proper d-algebraic Hardy field
extension.

Maximal Hardy fields (with respect to inclusion) are d-maximal, and
d-maximal Hardy fields contain R (thus are H-fields) and are Liouville
closed and w-free.

Boshernitzan (1986):

eachy € C2withy” +y = e*” is hardian, and every d-maximal
Hardy field contains a solution y to this equation.

(So there are at least 2% many maximal Hardy fields; in fact, later it
turned out that there are exactly 92%0 many.)



Closed Hardy fields

Here is the fundamental fact about d-maximal Hardy fields:

Theorem (characterizing d-maximal Hardy fields)
Let H be a Hardy field. Then
H isd-maximal <= H D Rand H is closed.

Combining it with known properties of closed H-fields substantiates
this as the “ultimate” d-algebraic extension theorem for Hardy fields:

Corollary
Let H be a Hardy fieldand P € H{Y }, P ¢ H.

@ There are y, z in a Hardy field extending H with P(y + zi) = 0.

@ If P has odd degree, then there is some y in a Hardy field
extension of H with P(y) = 0.




Closed Hardy fields
For a proof of this theorem see arXiv:2408.05232.
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We give a rough outline in the next lecture, together with some
applications and extensions.

In the remainder of this lecture we prepare the ground by talking a
bit about linear differential operators over H-fields.



Linear differential operators

Let K be a differential field and C' = Ck. We put
K9] = the ring of linear differential operators over K.

Formally, K[d] is a ring containing K as a subring, with a
distinguished element o, such that as K -vector space,

KP|=K o Ko KR ®--- ]

and

| da=ad +d foralla € K. ]

Every A € K9] can be written as
A=ay+a10+---+ad" (ag,...,ar € K, r € N).

If a,. # 0, then A has order r, and if a,, = 1, then A is called monic.
With order(0) := —oo, we have

order(AB) = order(A) + order(B) forall A, B € K[d].



Linear differential operators

Call A of positive order irreducible if there are no A;, Ay € K|d] of
positive order with A = A; A5. Each A of positive order factors as

A=Ay ---A, withirreducible 4,,..., A, € K|J].

Let R be a differential ring extension of K. With A as above we
obtain a C-linear operator

y— Aly) ==aoy +ary +--+a,y™: R— R.
Multiplication in K[d] <— composition of C-linear operators:
(AB)(y) = A(B(y)) forA,Be K[dandy € R.
The kernel of A € K9] acting as C-linear operator on R,
kerp A:={y € K : A(y) =0},

is a C-linear subspace of R, with dimkerg A < rif0 < order A < r.



Linear differential operators

The following are the main results about linear differential operators
over H-fields. For this let H be a closed H-field and K := H|i],
equipped with the unique derivation extending that of H.

Theorem (factorization of operators)

Every irreducible element of K [d] has order 1. As a consequence,
if A € H|[d] is irreducible, then A has order 1 or order 2.

Proof.
Let A € K[d] have order r > 1. There exists R € K{Z} \ K (the
Riccati transform of A) of order r — 1 such that

Al
Yy

= R(z) for each unit y of a d-ring D K and z = /.

Since H is closed, we can take some z € K with R(z) = 0; then we
have A = B - (0 — z) for some B € K|d]. O



Linear differential operators

Hence in order to establish the newtonianity of d-maximal Hardy
fields, we will have to, in particular, deal with factoring linear
differential operators over complexified Hardy fields K = H]i|.

This actually turns out to be a key tool for proving the
characterization of d-maximal Hardy fields.

The final fact for today uses only that K, equipped with the
dominance relation extending that of H (a d-valued field in the sense
of Rosenlicht) is newtonian, in the natural sense:

Theorem (linear surjectivity)
Let A € K[d]7. Thenforeachb € K thereisay € K with A(y) = b.
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V. Maximal Hardy fields



Recap from yesterday

Recall that
® an H-field is closed if it is Liouville closed, m-free, newtonian;
® a Hardy field is d-maximal if it has no proper d-algebraic Hardy
field extension.
At the end of yesterday’s lecture we met the fundamental

Characterization of d-maximality
Let H be a Hardy field. Then
H is d-maximal <= H D Rand H is closed.

< Follows from the “no new constants” theorem, also discussed
yesterday.

= Amounts to showing that each Hardy field has a d-algebraic
Hardy field extension H O R which is closed.

Today we tackle this remaining task:



Constructing newtonian Hardy fields

Theorem

Every w-free Hardy field has a newtonian Hardy field extension.

Recall: an ungrounded H-field H is newtonian if every P ¢ H{Y }7
withndeg P = 1hasazeroy < 1in H.

This notion, and w-freeness, also make sense (and have equally nice
properties) for d-valued fields such as K = H]i| for an H-field H:

Definition (€ nonstandard!)

A valued d-field K with C' = C is d-valued if for f,g € K*:
() f<g=1 = g #0&f-L <1 &t >4,
(H2) f=1 = f ~c forsomece C*;

(H3) f <1 = <L



Holes

Let K be an o-free d-valued field.

Definition

Ahole in K is a triple (P, m, f) where

e Pe K{Y}\K,

* me K*, and

° fe K \ K for an immediate d-valued field extension K of K,
such that P(f) =0and f <m.

~

The order and complexity of a hole (P, m, f) in K are those of P.
A hole in K is minimal if no hole in K has smaller complexity; these
are “minimal counterexamples” to non-newtonianity, since:

[ K newtonian <= K hasno holes. ]

(Stated for m-free H-fields in the last lecture.)



The general strategy

Let H O R be an w-free Liouville closed Hardy field which is not
newtonian. To show:

[ H has a proper d-algebraic Hardy field extension. ]

~

Take a minimal hole (P, m, f) in H, and arrange m = 1. Then
e r:=order P > 1;
® P € H{Y}\ H is aminimal annihilator of f over H

(i.e., of minimal complexity such that P(f) = 0);
® His (r — 1)-newtonian: “newtonian up to order r — 1".

We try to find f in a Hardy field © H and a ordered differential
field isomorphism H(f) — H(f) over H with f — f.

So at the very least:

We need some f € C<*>° with P(f) =0and f < 1!




Smoothness considerations

oP
Let| Sp := %0 (the separant of P), so degy-(-) Sp < degy-() P.

Proposition (automatic smoothness)

Let f € C" (so P(f) € C makes sense). If P(f) = 0and Sp(f) € C*,
then f € C<%°.

(Similarly with C* or C* in place of C<°°, provided H is a C®°-Hardy
field or a C¥-Hardy field.)

Relevant case: “almost linear” P

Suppose

P=Q+R whereQ=Y" 4+ YV ..4gYandR < 1.
If f € C"with P(f)=0and f,f,...,f") <1, then f € C<.
(Since then Sp(f) ~ 1andso Sp(f) € C*.)



Normalization

We consider various operations on holes in H, such as

~

replace (P, m, f) by (P+f,m,f— f) where f € H satis-
fiesf—f <m,and P.¢(Y) := P(Y + f),

~

to transform our given hole in H into a hole (P, 1, f) in H where P
has a nice shape as in the “relevant case” above (and more).

Normalization procedures of this kind are the subject of our
monograph arXiv:2403.19732.
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Inverting the linear part

let | L=Lp:= Z (g/%) (0)o° € H[d]| (the linear part of P).

=0

Can also arrange that order L = r and L is monic. We now make a
Bold assumption: L splits (strongly) over H
L=(0—¢1) - (0— ¢r)for some ¢; € H with ¢; = 1.

For a suitable a € R, representing the coefficients of P by functions
in C, we obtain an R-linear operator y — L(y): C, — C,. Here

_ { R-linear space of r-times continuously differen-
a

T
Ca = tiable functions [a, +00) — R.

Using our strong splitting of L, by suitable r-fold integrations we
obtain a “good” R-linear right inverse L~': C, — C” of this operator:

L(L ' (y) =y forally € C,.



Inverting the linear part

More precisely, consider the R-linear subspace

€= {fec I IF - 1D < o0}

of C},, where || - || is the sup norm on C,. Equipped with the norm

£ Il = max {[L£1L 10 - 1F

this is a Banach space, and “good” roughly means that L=!: C, — C”
restricts to a continuous operator (C,)~ — (CH)<.

Next we convert the problem of solving

[ P(y) =0, y=<1 ]

in (C2)= into a fixed point problem:



Computing a fixed point
Write
P=P —-R where P; := homogeneous part of degree 1 of P
and consider the (generally non-linear) operator
ferW(f) = LN (R(S)): € — Cp
Then
v(f)=f = R(f)=L(f)=h() = P{)=0.

Now if

o U(f) < 1foreach f € (C)~, and
e U restricts to a contractive operator on a closed ball of (C},)<,
say B:={feC;:|fl-<1/2},

then we get a fixed point f € B of ¥ with f < 1 as required.

These hypotheses can be achieved with the right kind of
normalization theorem and suitably modifying the definition of V.



Passing to the complex realm

@ There is a problem with our “bold assumption”:

[ L might not split over H, or even over K = H|i]. ]

To get around this, we use: ‘ K is also w-free and non-newtonian. ‘

~

So instead of a hole of minimal complexity in H, we let (P, m, f) be a
hole of minimal complexity in K.

We can arrange here that f: g+ hi with §,ﬁ =< 1in an immediate

H-field extension of H. Then§ ¢ H or h ¢ H, say

As before we get r := order P > 1, P is a minimal annihilator of f
over K, and K is (r — 1)-newtonian. We also arrange thatm = 1
and the linear part Lp € K9] of P has order r. Now indeed:

L p splits over K.

(Since K is algebraically closed, -free, and (r — 1)-newtonian.)



Back to the real world

Our fixed point construction then adapts to produce a germ
f=g+hi (g,heC~>) with P(f)=0, f<1.

Let @ be a minimal annihilator of g over H. We face a new problem:

[ We cannot expect that Q(g) = 0. ]

If Lo € H|9] splits over K, then we can try to apply fixed point

~

arguments like the ones above, with (P, 1, f) replaced by the
hole (Q,1,9) in H, to find a zeroy € C<* of Q.

Unfortunately we only know that 1 < s < 2r for s := order @), and
we may have s > r.

So we cannot ensure that Lg splits over K, or to normal-

~

ize (Q,1,9) as we indicated above for (P, 1, f).



A way out

Consider L, . € ﬁ[a] (which also has order s).

A differential-algebraic fact to the rescue:

If Lp,_ . splits over K, then so does Lqg,,-

The hypothesis here holds if H is dense in H (in the sense of <):
forallj € Hande € H* thereisay € H withy — § < .

Infact, if g € H is only sufficiently close to g, then L, , € HI[d] is
close to an operator in H[d] that does split over K.

Use (Q44,1,9 — g) instead of (Q, 1,7).




A way out

This almost works, but:

We can neither expect that H is dense in ﬁ, nor that the
hole (@, 1,9) in H is minimal.

Fortunately, to get around this we can instead
e use that g is the limit of an “almost” cauchy sequence in H;
¢ in the definition of “hole” in H relax the condition Q(g) = 0.

Now suppose we finally find g € C<>° such that Q(g) = 0and g < 1.

We need to adjoin g to H:



Enlarging the Hardy field

The germ g generates a Hardy field H (g) isomorphic to H (g)
by an isomorphism over H with g — g.

The zeros g, g of (Q must have similar asymptotic properties w. r. t. H:

Example (we need to show much more, of course)

hneH & g—h=<n = g—h=<n.

Now (g — h)/nand (g — h)/n < 1 are zeros of Q4 xn € H{Y}.
The Fixed Point Theorem also yields azero y < 1 of Q4 xn in C<e°,

Then @ and | g1 := yn + h |both solve the asymptotic equation

QYY) =0, Y <1. (E)

If we can getthen g—h = (g—g1)+yn < nasneeded.



Enlarging the Hardy field

Callagerm ¢ € C smallif < nforalln € H* withg — h < nfor
some h € H. Thus we need to show:
differences of solutions to (E) in C<°° are small.

Simple estimates coming out of the proof of the Fixed Point Theorem
are not enough. We need

® 3 generalization of the Fixed Point Theorem for weighted norms
(instead of || - ||) with weight given by a representative of n;

® a construction of right-inverses of linear differential operators
which is “uniform in n”.

We use this to show:
each difference ¢ of solutions to (E) give rise toa zero z < 1

of A in C<°°[i] whose smallness implies that of ¢.

Here A € H|d] is a linear differential operator of order s which
approximates L¢ and splits over K, implicit in the above.



Enlarging the Hardy field

To ensure that all zeros of this operator A are small requires another
normalization procedure on (@, 1, 9).

To make all this work, we also need to study the asymptotics of zeros
of linear differential operators which split over K.

For this we rely on a theorem of Boshernitzan on uniform distribution
mod 1 of hardian germs, combined with a structure theorem for the
kernel | kerg<cop;) A | of A. O

Rather than going into more detail, we now conclude this sketch of
the characterization of d-maximality, and just formulate the relevant
structure theorem, in the case of matrix linear differential equations
over d-maximal H:



Solution spaces of linear differential equations

Generalizing a fundamental theorem about holonomic functions:

Theorem (assuming H is d-maximal)

Let M be ann x n matrix over K := Hi]. Then the C-linear space

of solutions (in C<°°[i]) to the linear differential equation

has a basis

fie®i . fae?nt where f; € K", ¢, € H(j=1,...,n).

The ¢’ are “eigenvalues” of y' = My.
Can arrange here ¢; = 0or ¢; > 1,and ¢; = ¢; or ¢p; — ¢; > 1.

If M has suitable symmetries, then we can also guarantee the
existence of a nonzero solution which lies in K™ (and hence is
non-oscillatory): e.g., if M is skew-symmetric and n is odd.



The order 2 case

Corollary (conjectured by Boshernitzan, 1982)

Let H be a Hardy field and a,b € H, and suppose the equation
v +ay +by=0 (L)

has an oscillating solution (in C?). Then there are germs g > 0
and ¢ > R in a Hardy field extension of H such that

y is a solution of (L) <= y = cgcos(¢ + d) for some c,d € R.

In favorable situations (e.g., when H is w-free), g, ¢ are unique up
constants, and contained in each maximal Hardy field containing H.



The example of the Bessel equation

22Y" + 2’ + (x = 1/2)Y =0 (B,)

Corollary

There is a unique germ ¢ = ¢,, in some Hardy field with ¢ — z < 1/x
such that the solutions of (B,) are exactly the germs of the form

y = \/7 cos(¢ + d) (c,d € R).

The “phase function” ¢, is Liouvillian < v € % + Z, and then

¢)_

(xi@j) for distinct pairs (a;, b;) € R* x R.
j=1



The example of the Bessel equation

We have an asymptotic expansion

3
¢1/N$+'u 1 71_{_# 726u+25 73_‘_ pe—115p 5+1;(1]87u 1073 75_1_._.

with o = 402,

We obtain this by verifying that ) = 1/¢’ satisfies an order 3 linear
differential equation

W'+ (20 =0, P~1,  fi=44(1—pa

There is a unique solution to this equation-with-asymptotic-side-
condition in T, which can be easily computed explicitly, namely the
one on the right-hand side of the asymptotic expansion for ¢,, above.

Now embed the Hardy field R(z, ¢) into T over R(x) using the
expansion theorem from the last lecture. ]

(This can be used to prove facts about the Bessel functions—certain
distinguished solutions to (B, )—in a complex-analysis-free way.)



Dependence on constant coefficients

Many properties of the solutions of A(y) = 0 are typically definable
in the coefficients of A € H|d]. For example, let

bi,....bp e HZ] = H[Z1,...,Zn).
For ¢ € R™ we then obtain a linear differential equation over H(RR):
v + 01y -+ b (c)y = 0 (L)

Corollary (using a result from last lecture)

The set of all c € R™ such that no solution y € C" of (L.) oscillates is
semialgebraic.

Cauchy-Euler equation, H = R(z)

" -1,/ —2,,
y' + cx y-l—dx.y'—O(c,d.ER) (c—l)2>4d.
has no nonzero oscillating solution




Analytic Hardy fields

Reminder

A C¥-Hardy field (also called an analytic Hardy field) is a Hardy
field H C C¥. (These are the ones of interest for most applications.)

Let M be a maximal C*-Hardy field, i.e., a C*-Hardy field which is
maximal with respect to inclusion among C“-Hardy fields.

By our characterization of d-maximality and automatic smoothness,
M contains R and is a closed H-field.

Hence each system of finitely many conditions

where P,Q € M{Y} = M{Yy,...,Y,}and g
is one of the symbols =, #, <, <, %, <,

PY) 0 Q(Y) {

which has a solution in a Hardy field extension of M, has one in M.

(Likewise with C* in place of C¥.)



Analytic Hardy fields

We do not know whether M is also a maximal Hardy field!

Nevertheless:
M is dense in each of its Hardy field extensions.

Like the results to follow, this ultimately relies on Whitney’s
Approximation Theorem.

Maximal C“-Hardy fields are very rich. To make this precise, we call
an ordered set short if it contains no uncountable subset which is
well-ordered or reverse well-ordered. (Example: R.)

Theorem (A.-van den Dries, 2025+)

Every short H-field with archimedean constant field embeds into M.

In particular, every Hardy field which is countably generated over its
constant field embeds into M.



Analytic Hardy fields

We already know: the H-field T9? of differentially algebraic
transseries embeds into M. But since T is short, M even supports a
“summation operator” defined on all of T:

Corollary
T embeds into M.

This is a Hardy field version of Besicovitch's analytic strengthening of
Borel’s theorem on C'°°-functions with prescribed Taylor series.

The key to the results above is an understanding of singly generated
(d-transcendental) Hardy field extensions H(y) O H where y is of
countable type over H:

the cofinality of H<Y and coinitiality of H>Y are countable.

This extends earlier results of Boshernitzan and Sjodin mentioned in
the first lecture (the case y > H). The proof is supported by a careful
analysis of singly-generated extensions of asymptotic couples.



Open questions

We finish with some open

Questions

Is there a maximal Hardy field which is closed under
composition? Under compositional inversion? [Boshernitzan]
Is there a Hardy field H which is closed under composition and
an embedding T — H which respects composition?
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