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Overview

Hardy fields and transseries are complementary approaches to a
“tame” part of analysis. In these lectures I plan to give an
introduction to these two topics assuming no knowledge of either.

Hardy fields are the natural domain of asymptotic analysis,
where all rules hold, without qualifying conditions.

—Maxwell Rosenlicht
They are one-dimensional relatives of o-minimal structures, and as
such they occupy a central role in the intersection of analysis, model
theory, and dynamical systems. But they have also found applications
in various other parts of mathematics, notably in ergodic theory.

Only introduced in the 1980s, transseries are formal objects which
allow us to model the asymptotic behavior of elements in Hardy
fields, and are often are easier to handle (no convergence
considerations, etc.). They arose independently in analysis (Écalle:
Dulac’s Problem) and logic (Dahn-Göring: Tarski’s Problem).



Overview

My talks will go hand in hand with those of Tobias Kaiser, who will
focus on the connections between Hardy fields, o-minimality, and
Hilbert’s 16th Problem, whereas I will concentrate on model theoretic
and algebraic aspects (but some baby analysis will be involved).

Plan for my lectures

I Hardy fields
II Transseries
III Asymptotic differential algebra
IV Model theory of transseries
V Maximal Hardy fields



I. Hardy fields



Germs
For a ∈ R let

Ca := ring of continuous functions [a,+∞) → R.

For f ∈ Ca (a ∈ R) and g ∈ Cb (b ∈ R) we say that

f and g have the same germ at+∞ :⇔ f(t) = g(t) for all t ≫ 0.

This defines an equivalence relation on the set
⋃

a Ca (disjoint union).
The equivalence class of f ∈ Ca is the germ of f at+∞.

C := ring of germs at+∞ of functions f ∈ Ca (a ∈ R).

Given a property P of real numbers and f ∈ C we say that P
(
f(t)

)
holds eventually if P

(
f(t)

)
holds for all t ≫ 0. Thus

f = 0 ⇐⇒ f(t) = 0 eventually.



Germs
We have a partial ordering on C given by

f ⩽ g :⇐⇒ f(t) ⩽ g(t), eventually.

Naturally we have R ⊆ C (as an ordered subfield).
We also define

f < g :⇐⇒ f ⩽ g & f ̸= g,

f <e g :⇐⇒ f(t) < g(t), eventually,
( =⇒ f < g.)

Examples (units of the ring C)

f ∈ C× ⇐⇒ f(t) ̸= 0, eventually ⇐⇒ f <e 0 or 0 <e f.

Thus the germ at+∞ of sinx is ̸= 0 in C but not a unit of C.



Germs

Asymptotic relations on C

f ≼ g :⇐⇒ |f | ⩽ c|g| for some c ∈ R> g dominates f
f ≺ g :⇐⇒ g ∈ C× and |f | ⩽ c|g| for all c ∈ R>

g strictly dominates f
f ≍ g :⇐⇒ f ≼ g and g ≼ f f and g are asymptotic
f ∼ g :⇐⇒ f − g ≺ g f and g are equivalent.

(Indeed,≍ and∼ are equivalence relations on C respectively C×.)

Examples (with x = germ at+∞ of the identity function)

• 1 ≺ x ≺ x2 ≺ · · · ≺ xn ≺ xn+1 ≺ · · · , so

a0 + a1x+ · · ·+ anx
n ∼ anx

n for a0, . . . , an ∈ R, an ̸= 0.

• x2 · sinx ̸≼ x, x ̸≼ x2 · sinx.



Hausdorff fields

Definition
A subfield of C is called a Hausdorff field.

Example
R[x] ̸= := R[x] \ {0} ⊆ C× =⇒ R(x) ⊆ C is a Hausdorff field.

LetH be a Hausdorff field and f, g ∈ H . Then

f ̸= 0 =⇒ f ∈ H× ⊆ C× =⇒ f >e 0 or f <e 0,

so⩽ restricts to a total ordering onH makingH an ordered field.
As a consequence

f ̸≼ 1 =⇒ |f | > n for each n =⇒ 1 ≺ f,

so unlike for arbitrary germs, one of f ≼ g or g ≼ f always holds.
Hence≼ restricts to a dominance relation onH :



Dominance relations

Definition (for a fieldK)
A dominance relation onK is a binary relation≼ onK such that
(D0) 1 ̸≼ 0;
(D1) f ≼ f ;
(D2) f ≼ g and g ≼ h ⇒ f ≼ h;
(D3) f ≼ g or g ≼ f ;
(D4) f ≼ g ⇔ fh ≼ gh, provided h ̸= 0;
(D5) f ≼ h and g ≼ h ⇒ f + g ≼ h.

Let≼ be a dominance relation onK. We have the subring

O := {f ∈ K : f ≼ 1}

ofK, which is a valuation ring ofK: f ∈ K \ O ⇒ 1/f ∈ O
Each valuation ring ofK arises from a unique dominance relation.



Dominance relations
LetK be a valued field: a field with a dominance relation on it. Put

f ≺ g :⇐⇒ f ≼ g & g ̸≼ f, f ≍ g :⇐⇒ f ≼ g & g ≼ f.

The valuation ringO = OK has a unique maximal ideal, namely

O = OK := {f ∈ K : f ≺ 1}.

For f ∈ K let vf :=
( equivalence class of f with respect
to the equivalence relation≍ onK

)
.

Two subordinate structures

1 The residue field k = kK := O/O ofK.
The map f 7→ f + O : O → k is the residue morphism.

2 The (ordered) value group Γ = ΓK := {vf : f ∈ K×} ofK,
with group operation+ and ordering⩽ given by

vf + vg = v(f · g), vf ⩾ vg :⇐⇒ f ≼ g.

The map v : K× → Γ is the valuation ofK.



The dominance relation on a Hausdorff field

LetH be a Hausdorff field, turned into a valued field by the
restriction of the relation≼. Then the restrictions of≺,≍ from C
toH give exactly the relations onH from the previous slide. Also,

O =
{
f ∈ H : |f | ⩽ n for some n

}
,

O =
{
f ∈ H : |f | ⩽ 1/n for all n ⩾ 1

}
.

Equip k = O/O with the unique ordering making it an ordered field
and the residue morphismO → k order-preserving. Then there is a
unique embedding k → R, which is onto if R ⊆ H .

Example: H = R(x)

Then Γ = Zv(x) with v(x) < 0 = v(1), and

v(p/q) = (deg p− deg q)v(x) for p, q ∈ R[x] ̸=.



Algebraic extensions of Hausdorff fields

An ordered field F is real closed if F [i] (i2 = −1) is algebraically
closed. Equivalently (Artin-Schreier):
(R1) every f ∈ F> has a square root in F , and
(R2) each odd-degree P ∈ F [Y ] has a zero in F .

Theorem (essentially Hausdorff)

Hrc :=
{
y ∈ C : P (y) = 0 for some P ∈ H[Y ]̸=

}
is a real closed Hausdorff field extendingH .

Key part of the proof:

if y ∈ Hrc, then P (y) = 0 for some monic irreducible P ∈ H[Y ].

To see this let

P = Y d + P1Y
d−1 + · · ·+ Pd ∈ H[Y ] (P1, . . . , Pd ∈ H)

be any monic polynomial inH[Y ] of degree d ⩾ 1.



Algebraic extensions of Hausdorff fields

Take a ∈ R and representatives of the Pj in Ca. This yields for t ⩾ a:

P (t, Y ) := Y d + P1(t)Y
d−1 + · · ·+ Pd(t) ∈ R[Y ].

Lemma 1 (parametrizing the real zeros of P (t, Y ))

Suppose P is irreducible. Then there are y1 <e · · · <e ym in C such
that the distinct real zeros of P (t, Y ) are y1(t), . . . , ym(t), eventually.

Proof.
Take A,B ∈ H[Y ] with 1 = AP +BP ′. Then

1 = A(t, Y )P (t, Y ) +B(t, Y )P (t, Y )′, eventually.

Hence P (t, Y ) has exactly d distinct complex zeros, eventually.
Now use “continuity of roots”.



Algebraic extensions of Hausdorff fields

Similarly one shows:

Lemma 2
Let P ̸= Q inH[Y ] be monic and irreducible. Then for all y, z ∈ C
with P (y) = Q(z) = 0 we either have y <e z or y >e z.

Suppose now y ∈ Hrc with P (y) = 0. Write

P = Qe1
1 · · ·Qen

n (ej ⩾ 1,Qj ∈ H[Y ] distinct, monic irreducible).

Lemmas 1 and 2 yield y1, . . . , ym ∈ C such that
1 eventually, y1(t) < · · · < ym(t) are the real zeros of
theQ1(t, Y ), . . . , Qn(t, Y ) ∈ R[Y ] (thus of P (t, Y ));

2 for each i ∈ {1, . . . ,m} there is a unique j ∈ {1, . . . , n} with
Qj

(
t, yi(t)

)
= 0, eventually.

Continuity and the connectedness of halflines [a,+∞) yields a
single i with yi = y, and thusQj(y) = 0 for some j.



Composition

Let g ∈ C be eventually strictly increasing such that g > R, with
compositional inverse ginv ∈ C. The composition operation

f 7→ f ◦ g : C → C, (f ◦ g)(t) := f
(
g(t)

)
eventually,

is an R-algebra automorphism of C, with inverse f 7→ f ◦ ginv, which
mapsH isomorphically onto the Hausdorff fieldH ◦ g.

Example
LetH = R(x) and g = x+ sinx; thenH ◦ g = R(x+ sinx).

We say thatH is closed under composition if for all eventually
strictly increasing g ∈ H with g > R, we haveH ◦ g ⊆ H ; similarly
we define whenH is closed under inverses.

Example
H = R(x) is closed under composition but not under inverses.



Hardy fields

Let’s now bring differentiation into the picture: for r = 0, 1, 2, . . .

Cr :=
{ ring of germs f ∈ C having an r-times continuously
differentiable representative [a,+∞) → R (a ∈ R),

and C<∞ :=
⋂
r

Cr, a differential ring
(with differential subrings C∞ and Cω).

Definition (Bourbaki)
A Hardy field is a differential subfield of C<∞.

Analogously one defines C∞-Hardy fields or Cω-Hardy fields:{
Cω-Hardy fields

}
⊆

{
C∞-Hardy fields

}
⊆

{
Hardy fields

}
All these inclusions are proper, but this is not obvious.
Most Hardy fields that occur “in nature” are analytic. Easy examples:

Q ⊆ R ⊆ R(x) ⊆ R(x, ex) ⊆ R(log x, x, ex)



Hardy fields

LetH be a Hardy field. ThenH is a Hausdorff field. We viewH as an
ordered valued field as explained before. Note:

f ∈ H =⇒ f ′ ∈ H =⇒ sign f ′(t) eventually constant,

so f is eventually monotonic, hence lim
t→+∞

f(t) ∈ R ∪ {±∞} exists.
We have

f ≼ g ⇐⇒ |f | ⩽ c|g| for some c ∈ R> ⇐⇒ lim
t→+∞

f(t)

g(t)
∈ R,

f ≺ g ⇐⇒ |f | ⩽ c|g| for each c ∈ R> ⇐⇒ lim
t→+∞

f(t)

g(t)
= 0.

Example (for what Rosenlicht meant)
Suppose 0 ̸= f, g ̸≍ 1 are in a Hardy field. Then (l’Hôpital’s Rule):

f ≼ g ⇐⇒ f ′ ≼ g′



Hardy fields

LetH = R(log x, x, ex). Below is a depiction of the valuation ring

O = {h ∈ H : h ≼ 1}

ofH with its maximal ideal of “infinitesimals”:

O = {h ∈ H : h ≺ 1}.

e−x−x−10

0 1
2

O

O

≻ 1≻ 1 ≼ 1

≺ 1

1

1 + e−x

−1· · · 2 · · ·
log x ex e2x



Composition in Hardy fields

LetH be a Hardy field. In order to obtain another Hardy field, not
just a Hausdorff field, via composition, requires some care:

Let ℓ ∈ C1 with ϕ := ℓ′ ∈ H , ℓ > R.

Then ϕ > 0, and the R-algebra automorphism

h 7→ h◦ := h ◦ ℓinv

of C<∞ mapsH onto the Hardy fieldH◦ = H ◦ ℓinv:

(h◦)′ = (ϕ−1h′)◦.

NB: the ordered field isomorphism h 7→ h◦ : H → H◦ is not a
differential field isomorphism!



Basic extension theorems

LetH be a Hardy field.

Theorem (A. Robinson)
Hrc is a Hardy field.

For this let P0, . . . , Pd : [a,+∞) → R be C1. For t ⩾ a and y ∈ R:

P (t, y) := P0(t) + P1(t)y + · · ·+ Pd(t)y
d,

P ′(t, y) := P1(t) + 2P2(t)y + · · ·+ dPd(t)y
d−1, and

P ∂(t, y) := P ′
0(t) + P ′

1(t)y + · · ·+ P ′
d(t)y

d.

Let y ∈ Ca satisfy P
(
t, y(t)

)
= 0 and P ′(t, y(t)) ̸= 0 for all t ⩾ a;

then y is C1 with

y′(t) = −P ∂
(
t, y(t)

)/
P ′(t, y(t)) for t ⩾ a.

This follows from the Implicit Function Theorem and the Chain Rule.

Hence if y ∈ Hrc, then y ∈ C1 and y′ ∈ H[y] ⊆ Hrc.



Basic extension theorems

Next we turn to simple first-order algebraic differential equations.

Theorem (Marić, Singer, 1970s)

Let F,G ∈ H[Y ] and y ∈ C1 with

y′G(y) = F (y) and G(y) ∈ C×.

ThenH[y] is an integral domain and has fraction fieldH(y) ⊆ C<∞;
moreover,H(y) is a Hardy field.

NB: we are not claiming that a solution y ∈ C1 of the differential
equation y′G(y) = F (y) always exists! (Think y′ = 1 + y2.)

Corollary (Hardy, Bourbaki)
H(R) andH(x) are Hardy fields, and for h ∈ H , so are

H(
∫
h), H(eh), H(log h) when h > 0.



Hardy’s dream

ORDERS OF INFINITY
THE ' INFINITARCALCUL ' OF
PAUL DU BOIS-REYMOND

by

G. H. HARDY, M.A., F.R.S.

Fellow and Lecturer of Trinity College, Cambridge

Cambridge :

at the University Press

1910

Hardy defined the field HLE of (germs of)
logarithmic-exponential functions:
the smallest real closed Hardy field contain-
ing R(x) which is closed under exp and log.

Examples of germs inHLE:

x
√
2 + 5x− 3x−1 ee

x +x2

sinhx = 1
2(e

x− e−x) log

(
x+ 1

x− 1

)

He made a rather audacious claim:

LOGARITHMICO-EXPONENTIAL SCALES 35

For simplicity let us take =
, a = l. Then the equations of Q^Q^+i and

f Qzn + 1 Qtn + 2 are respectively

say. Now (iv. 1)

and a function /, such that An -</-</* for all values of n, transcends the

logarithmico-exponential scales. But / clearly satisfies these relations, and
so its increase is incapable of exact measurement by these scales.

It is easily verified that AnAn# -< ex and pnp.nx > e? for all values of n.

Hence it is clear a priori that any increasing solution of (1) must satisfy

This kind of 'graphical' method may also be employed to define functions

whose increase, like that of the function considered under (i) above, is slower

than that of any logarithm or more rapid than that of any exponential. It

can be employed, for example, to solve the equation

and it can be proved that the increase of a function such that
<f> (2*)

is slower than that of any logarithm (vii. 3).

6. The importance of the logarithmico-exponential scales.

As we have seen in the earlier paragraphs of this section/ it is possible,

in a variety of ways, to construct functions whose increase cannot be

measured by any .//-function. It is none the less true that no one yet

has succeeded in denning a mode of increase genuinely independent of

all logarithmico-exponential modes. Our irregularly increasing func-

tions oscillate, according to a logarithmico-exponential law of oscillation,

between two logarithmico-exponential functions; the functions of 5

were constructed expressly to fill certain gaps in the logarithmico-

exponential scales. No function has yet presented itself in analysis

the laws of whose increase, in so far as they can be stated at all, cannot

be stated, so to say, in logarithmico-exponential terms.

It would be natural to expect that the arithmetical functions which

occur in the theory of the distribution of primes might give rise to

genuinely new modes of increase. But, so far as analysis has gone, the

evidence is the other way.

Thus if we denote by & (x} the number of prime numbers less than x, it is

known that

/ \
x

& (x) <^>
-,
- .

logo?

32



Hardy’s dream

It turns out thatHLE is closed under composition.

But (log x log log x)inv is not an LE-function. (Liouville, 1830s)

It is not even asymptotic to any h ∈ HLE.
(van den Dries-Macintyre-Marker, van der Hoeven, 1997)

Moreover,HLE is not closed under
∫
. (E.g.,

∫
ex

2
/∈ HLE). Thus:

HLE lacks many closure properties that would make it useful
for a comprehensive theory of “tame” asymptotic analysis.

We may modify the definition: for example,

Li(R) :=
{

the smallest real closed Hardy field
which is closed under exp and

∫
.

Note: Li(R) (the Hardy-Liouville closure of R) contains x and is
closed under log: (log h)′ = h′/h for h > 0. (SoHLE ⊆ Li(R).)



Hardy’s dream

How to go beyond order 1 differential equations?

A cautionary example (Boshernitzan, 1986)
Any y ∈ C2 satisfying

y′′ + y = ex
2

is hardian, i.e., contained in a Hardy field.
(But no two distinct solutions to this equation are in a common
Hardy field, and none of them is in Li(R).)



Hardy’s dream

The growth of germs in Li(R) is also quite restricted:

Exponential boundedness: e0 = x < e1 = ex < e2 = ee
x
< · · ·

For any h ∈ Li(R) there is some n such that h ⩽ en.

Sjödin (1970) constructed a hardian germ eω ∈ C∞ such that eω ⩾ en
for each n. (Such eω is necessarily differentially transcendental.)
Boshernitzan (1984) showed that one can even take eω to be analytic,
namely as an analytic solution to the functional equation

eω ◦(x+ 1) = exp ◦ eω,

which was shown to exist by H. Kneser (1940s).

Indeed, every Hardy field extends to an Hardy fieldH which is
unbounded: there is no ϕ ∈ C with h ⩽ ϕ for each h ∈ H .



Hardy’s dream

Nevertheless, G. H. Hardy’s dream of an all-inclusive, maximally
stable algebra of “totally formalizable functions” (J. Écalle) persists.

In the next lectures we will see partial realizations of this vision.

P. du Bois-Reymond
(1831–1889)

F. Hausdorff
(1868–1942)

G. H. Hardy
(1877–1947)
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Overview

Plan for my lectures

I Hardy fields
II Transseries
III Asymptotic differential algebra
IV Model theory of transseries
V Maximal Hardy fields

In my previous lecture, I introduced Hardy fields: differential fields of
germs of real-valued one-variable functions.

We met the Hardy fieldHLE of LE-functions and the larger Li(R).

Unfortunately, both are quite small: HLE is not closed under
∫
, and

Li(R) is not closed under solving 2nd order linear DEs.

Today we will see a kind of workaround via formal series expansions.



Overview

Reminder on Laurent series
The field R((x−1)) of (formal) Laurent series over R in descending
powers of x consists of all series

f(x) = anx
n + an−1x

n−1 + · · ·+ a1x︸ ︷︷ ︸
infinite part of f

+ a0 + a−1x
−1 + a−2x

−2 + · · ·︸ ︷︷ ︸
infinitesimal part of f

We equip R((x−1)) with the ordering where x > R, dominance
relation with f ≼ 1 ⇔ f has infinite part 0, and derivation d

dx .

We naturally have R((x−1/m)) ⊆ R((x−1/mn)) form,n ⩾ 1, resulting
in the ordered valued differential field

P(R) :=
⋃
n⩾1

R((x−1/n))

of Puiseux series over R.



Overview

The ordered field P(R) turns out to be real closed. (Newton)

A consequence: the elements of the Hardy subfield

R(x)rc =
{
y ∈ C : P (y) = 0 for some P ∈ R(x)[Y ] ̸=

}
ofHLE admit an asymptotic expansion at+∞ using Puiseux series:

There is an embedding

R(x)rc ↪→ P(R)

of ordered valued differential fields.

This embedding cannot be extended to an embeddingHLE ↪→ P(R):

expx and log x do not make sense in P(R).



Overview

Question
Can we enlarge P(R) in a natural way to an ordered differential field
of formal series which embeds many more Hardy fields (like Li(R))?

The general idea:
start with R(x) and iteratively close off under exp, log, and
infinite summation.

In this lecture we will see how to make this idea precise and
extend P(R) to the ordered differential field T of transseries:

ee
x +ex/2 +ex/4 +···−3 ex

2
+5x

√
2−(log x)π+42+x−1+x−2+· · ·+e−x .

This ordered differential field turns out to be closed under
∫
and

under solving inhomogeneous order 2 linear differential equations.
This will give us hope that something similar can also be achieved on
the Hardy field side.



II. Transseries



Well-based series

Let (M,≼) be a linearly ordered set (ofmonomials). CallS ⊆ M
well-based if there is no sequence

m0 ≺ m1 ≺ m2 ≺ · · · inS.

Denote a function f : M → R as a series
∑
m
fmm where fm = f(m),

with support
supp f := {m : fm ̸= 0} ⊆ M.

Then

R[[M]] := {f : M → R : supp f is well-based}

is a subspace of the R-linear space RM. For f ∈ R[[M]]̸= let

d(f) := max supp f

be the dominant monomial of f .



Well-based series

From now on assume (M, · ,≼) is an ordered abelian group.

Then, with multiplication of well-based series defined by

f · g =
∑
m

( ∑
m1·m2=m

fm1 · gm2

)
m,

we obtain an R-algebra R[[M]].

Example
Take a multiplicative copy xR of (R,⩽, 0,+) with isomorphism

r 7→ xr : R → xR.

Then xR has the ordered subgroups xZ ⊆ xQ, and

R((x−1)) = R[[xZ]] ⊆ P(R) ⊆ R[[xQ]] ⊆ R[[xR]].



Summing well-based series

A family (fλ) in R[[M]] is said to be summable if
1
⋃

λ supp fλ is well-based; and
2 for allm there are only finitely many λ withm ∈ supp fλ.

We then define its sum f =
∑

λ fλ ∈ R[[M]] by fm =
∑

λ fλ,m.

Examples

1 Given f ∈ R[[M]], the family (fmm) is summable with sum f .

2 If f ≺ 1, then (fn) is summable with sum
1

1− f
.

Summability has various nice properties (e.g., rearrangement).
As a consequence of 2 , R[[M]] is a field: write f ∈ R[[M]]̸= as

f = cm (1− ε) where c ∈ R×,m ∈ M, ε ≺ 1;

then f−1 = c−1m−1
∑
n

εn.



Hahn fields

Turn R[[M]] into an ordered valued field satisfying, for f ̸= 0:

f > 0 ⇐⇒ fd(f) > 0,

f ≺ 1 ⇐⇒ d(f) ≺ 1.

The ordered valued field extension R[[M]] of R is called a Hahn field.
Recall the valuation ring, its maximal ideal, and the residue field:

O := {f : f ≼ 1}, O := {f : f ≺ 1}, k := O/O.

The residue morphismO → k restricts to an isomorphism R
∼=−−→ k.

The valuation R[[M]]×
v−→ Γ restricts to an isomorphismM

∼=−−→ Γ
of groups, with

m ≼ n ⇐⇒ vm ⩾ vn.

Next we consider directed unions of Hahn fields: the ordered field T
will be obtained as such a union.



Directed unions of Hahn fields

Let (Mi)i∈I with I ̸= ∅ be a family of ordered subgroups ofM
satisfyingM =

⋃
iMi. Assume that (Mi) is directed:

for all i, j there is k withMi,Mj ⊆ Mk.

We then obtain the ordered valued subfield

K :=
⋃

i R[[Mi]] ⊆ R[[M]].

Example: P(R) =
⋃

n⩾1R[[x(1/n)Z]] ⊆ R[[xQ]].
A family (fλ) inK is summable if there is an ordered
subgroupG ⊆ M such that R[[G]] ⊆ K, all fλ ∈ R[[G]], and (fλ) is
summable as a family in R[[G]]; then

∑
λ fλ ∈ K is defined.

(NB: if I is countable, then each suchG is contained in someMi.)
An R-linear map Φ: K → L is strongly linear if for every summable
family (fλ) inK the family

(
Φ(fλ)

)
is summable in L, and

Φ
(∑

λ fλ
)
=
∑

λΦ(fλ).

E.g., given g ∈ K, the operator f 7→ fg onK is strongly linear.



Analytic structure

Let t = (t1, . . . , tn) be a tuple of distinct variables and let

F = F (t) =
∑
ν

Fνt
ν ∈ R[[t1, . . . , tn]]

be a formal power series over R. Here

ν = (ν1, . . . , νn) ∈ Nn, Fν ∈ R, tν := tν11 · · · tνnn .

For any tuple ε = (ε1, . . . , εn) of elements of OK the family (Fνε
ν) is

summable, where εν := εν11 · · · ενnn (“Neumann’s Lemma”). Put

F (ε) :=
∑
ν

Fνε
ν ∈ OK .

Using Taylor expansions this allows us to extend each restricted
analytic function Rn → R to a mapKn → K, and hence turnK into
an extension of the Lan-structure Ran. If allMi are divisible, this is
an elementary extension.
However, when trying to define an extension of the real exponential
function to Hahn fields we run into problems:



Exponential fields
An exponential ordered field is an ordered field E equipped with an
exponentiation, that is, an embedding

exp: (E,+,⩽) → (E>, · ,⩽).

If exp(E) = E> then we call E a logarithmic-exponential ordered
field, and denote the inverse of exp by log : E> → E.

Examples
The ordered field Li(R) with exponentiation f 7→ ef , and its
logarithmic-exponential ordered subfieldsHLE and R.

We can’t turn R[[xR]] into a log-exp ordered field.
(Kuhlmann-Kuhlmann-Shelah: not even R[[M]] whenM ̸= {1}.)
To remedy this, we extend R[[xR]] in two steps:

1 first close off under exp to obtain the exponential ordered
field Texp of exponential transseries;

2 then close off under log to arrive at the log-exp ordered field T
of transseries.



Construction of Texp

Let (E,A,B, exp) be a pre-exponential ordered field:
1 E is an ordered field;
2 A,B ⊆ E are additive subgroups of E such that E = A⊕B

andB convex in E;
3 exp is an ordered group embedding (B,+,⩽) → (E>, · ,⩽).

(Think of exp as a partially defined exponentiation.)

Example
E = R[[xR]], A = R[[xR>

]], B = OE = R⊕ OE ,

exp(r + ε) = er ·
∑
n

εn

n!
(r ∈ R, ε ≺ 1).

In the following we suppose E = R[[M]].



Construction of Texp

We then define a pre-exponential ordered field (E∗, A∗, B∗, exp∗)
extending (E,A,B, exp) such that E ⊆ B∗ = domain of exp∗:
1. Take an ordered group isomorphism exp∗ : A → exp∗(A) onto

a multiplicative copy of A. Order M∗ := M × exp∗(A) so
that M and exp∗(A) are ordered subgroups of M∗ and M is
convex inM∗.

2. Set E∗ := R[[M∗]] = R[[M exp∗(A)]] ⊇ E = R[[M]].

3. Put O∗ := R[[M exp∗(A<)]]. With

A∗ := R[[M exp∗(A>)]],

B∗ := R[[M exp∗(A⩽)]] = E ⊕ O∗ = A⊕B ⊕ O∗

we have E∗ = A∗ ⊕B∗ andB∗ is convex in E∗.

4. Extend exp∗ to exp∗ : B∗ → (E∗)> by

exp∗(a+b+ε) := exp∗(a)·exp(b)·
∑
n

εn

n! (a ∈ A, b ∈ B, ε ∈ O∗).



Construction of Texp

Recursively define

(E0, A0, B0, exp0) := (R[[xR]], . . . ),
(En+1, An+1, Bn+1, expn+1) := (E∗

n, A
∗
n, B

∗
n, exp

∗
n),

and put

Texp = R[[xR]]E :=
⋃

nEn.

Then Texp equipped with the common extension exp: Texp → T>
exp

of the expn is an exponential ordered field extension of R.

/ Texp is not a logarithmic-exponential ordered field:
T>
exp = xR · exp(Texp) with x /∈ exp(Texp).

Idea
Successively replace x by new variables ℓ1 = log x, ℓ2 = log log x, . . .



From Texp to T
Formally, we introduce a strongly linear isomorphism

f 7→ f↓n = f(ℓn) : R[[xR]]E
∼=−−→ R[[ℓRn ]]E

of ordered exponential fields.

We identify R[[ℓRn ]]E with its image under the strongly linear
exponential ordered field embedding

R[[ℓRn ]]E ↪→ R[[ℓRn+1]]
E with ℓrn 7→ exp(rℓn+1) for each r ∈ R.

So we have inclusions

Texp = R[[ℓR0 ]]E ⊆ R[[ℓR1 ]]E ⊆ R[[ℓR2 ]]E ⊆ · · ·

of exponential ordered fields, and we obtain the log-exp ordered field

T = R[[xR]]LE :=
⋃

nR[[ℓRn ]]E.



Features of T

By construction, T is an increasing union of increasing unions of Hahn
fields; it can also be represented as a directed union of Hahn fields.

Upward and downward shift
These are the unique strongly linear automorphism f 7→ f ↑ of the
exponential ordered field T that sends x to ex, with inverse f 7→ f↓.
Their nth iterates are f 7→ f↑n, respectively, f 7→ f↓n.

Thus x↓n = ℓn, and for each f ∈ T there is an n with f↑n ∈ Texp.

Example (relevant for later)

λ :=
1

ℓ0
+

1

ℓ0ℓ1
+

1

ℓ0ℓ1ℓ2
+ · · · /∈ T.



Features of T

The sequence

· · · < ℓ2 < ℓ1 < ℓ0 = x = e0 < e1 < e2 < · · ·

is coinitial and cofinal in T>R = {f ∈ T : f > R}.

Fact
IfM is divisible, then the ordered Hahn field R[[M]] is real closed.

As a consequence, T is real closed, and thus (by Tarski), an
elementary extension of the ordered field R.

Indeed, by work of van den Dries-Macintyre-Marker (1994), T is also
an elementary extension of the Lan,exp-structure R; in particular, of
the exponential ordered field R.

But T also has a differential structure:



Differentiating transseries

A derivation on a fieldK is a map ∂ : K → K such that

∂(f + g) = ∂(f) + ∂(g), ∂(fg) = ∂(f)g + f∂(g) for all f, g ∈ K.

A differential field is a fieldK with a derivation ∂ onK. The constant
field of a differential fieldK is the subfield ker ∂ ofK.

Theorem (Écalle, v. d. Dries-Macintyre-Marker, v. d. Hoeven, 1990s)

There is a unique strongly linear derivation f 7→ f ′ on T such that

x′ = 1 and (exp f)′ = f ′ exp f for all f ∈ T.

The differential field T has some nice (but non-trivial) properties:
1 its constant field is R;
2 every f ∈ T has an antiderivative in T.

(=⇒ for all g, h ∈ T there is a y ∈ T× with y′ + gy = h.)



Sample computations in T

1. The inverse of ex+x

1

ex+x
=

1

ex(1 + x e−x)
= e−x

∑
n

(−1)n(x e−x)n

2. The logarithm of sinh = 1
2(e

x− e−x)

log(sinh) = log

(
ex

2
(1− e−2x)

)
= x− log 2−

∑
n⩾1

e−2nx

n

3. Integrating 1/log x(
x

log x

∑
n

n!

(log x)n

)′

=
1

log x



Embedding Hardy fields into T

Theorem (A.-v. d. Dries, 2002)
LetH be a Hardy field withH ⊇ R. Then every embeddingH → T
of ordered differential fields extends to an embedding Li(H) → T.

Thus there is an embedding of Li(R), and hence ofHLE, into T.
We may view an embeddingH → T as a formal expansion operator
and its inverse as a summation operator.

Example
The germ of the error function

erf : R → R, erf(t) :=
2√
π

∫ t

0
e−s2 ds

lies in Li(R). Any embedding Li(R) → Tmaps it onto the transseries

1− e−x2

x
√
π

(
1 +

∑
n⩾1

(−1)n
1 · 3 · 5 · · · (2n− 1)

(2x2)n

)
.



Embedding Hardy fields into T
E. Kaplan (2022) has generalized the theorem above. A special case:
Say that a Hardy fieldH is Lan-closed if for each restricted analytic
function F : Rn → R and g1, . . . , gn ∈ H , the germ of the function

t 7→ F
(
g1(t), . . . , gn(t)

)
is also inH . We then turnH into an Lan-structure in the natural way,
and ifH is also closed under exp, to an Lan,exp-structure.
Let

Li(R)an :=

{
the smallest Lan-closed Hardy field
which is closed under exp and

∫
.

There is an embedding Li(R)an → T of ordered differential fields
which is also a morphism of Lan,exp-structures.

(=⇒ the Hardy field of germs of functions definable in Ran,exp

embeds into T: van den Dries-Macintyre-Marker.)



Some questions about T
The differential field T turned out to be amenable to a computational
treatment: J. van der Hoeven (∼ 2000) gave a quasi-algorithmic
method for solving algebraic differential equations like

P (y, y′, . . . , y(n)) = 0 (P ∈ R[Y0, Y1, . . . , Yn])

in T. This motivates the questions:
1 Can we do something similar in Hardy fields?
2 Even more ambitiously: what are the first-order logical

properties of the differential field T? Or of “sufficiently rich”
Hardy fields?

3 Can we construct expansion/summation operators
encompassing (exponentially bounded) Hardy fields bigger
than Li(R)?

In later lectures we will see some answers to these questions.
Before we finish, we point out some further structure on T.



Composition

Let f range over T and g over T>R.

Theorem (see v. d. Dries-Macintyre-Marker, 2001)
There is a unique operation

(f, g) 7→ f ◦ g : T× T>R → T

such that for each g, the map f 7→ f ◦ g : T → T is a strongly linear
embedding of exponential ordered fields with x ◦ g = g.

This operation satisfies f ◦ x = f and f ◦ ex = f↑, and obeys

(f ◦ g)′ = (f ′ ◦ g) · g′ (Chain Rule).

Moreover, ◦ turns T>R into a group with identity element x.

V. Bagayoko has started to explore the solution sets of one-variable
equations in this and related groups.



Composition

Example (LambertW function: compositional inverse of x ex)
An asymptotic expansion forW is given by a transseries

W ∼ log x− log2 x+
∑

m⩾0, n⩾1

cmn
(log2 x)

n

(log x)m+n

= log x− log2 x+
log2 x

log x
+

(log2 x)
2

2(log x)2
− log2 x

(log x)2
+

(log2 x)
3

3(log x)3
− 3(log2 x)

2

2(log x)3
+

log2 x

(log x)3
+ · · ·

for certain coefficients cmn ∈ Q which are given by an explicit
formula, and log2 x = log log x [= ℓ2]. (de Bruijn, Comtet)
(This transseries is actually absolutely convergent for large x → ∞.)



L. Euler
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Overview

Plan for my lectures

I Hardy fields
II Transseries
III Asymptotic differential algebra
IV Model theory of transseries
V Maximal Hardy fields

In the last lectures, we met a variety of interesting differential fields
(of transseries, germs of functions, . . . ) equipped with asymptotic
structure, such as ordering and dominance.
We will now introduce an algebraic framework which unifies these
examples and helps to unravel their model-theoretic properties.
All based on joint work with (one or both of)

L. van den Dries and J. van der Hoeven.



III. Asymptotic differential algebra



The setting of differential algebra

LetK be a differential field (of characteristic 0), with derivation ∂.
As usual

f ′ = ∂(f), f ′′ = ∂
2(f), . . . , f (n) = ∂

n(f), . . .

The constant field ofK is C = CK := ker ∂ = {f ∈ K : f ′ = 0}.
For f ̸= 0 let f † := f ′/f be the logarithmic derivative of f . Note

(f · g)† = f † + g† for f, g ̸= 0.

The ring of differential polynomials (= d-polynomials) in Y1, . . . , Yn
with coefficients inK is denoted byK{Y1, . . . , Yn}. E.g.:

P (Y ) = Y (Y ′)2 + Y ′′Y (5) − 1 ∈ Q{Y } (n = 1, Y = Y1).



The setting of ordered differential algebra

An ordered differential field is a differential fieldK equipped with
an ordering making it an ordered field. We can then also turnK into
a valued field with dominance relation

f ≼ g :⇐⇒ |f | ⩽ c|g| for some c ∈ C.

Examples

1 Each Hardy fieldH is an ordered differential field with CH ⊆ R,
and for g ̸= 0, we have:

f ≼ g ⇐⇒ lim
t→+∞

f(t)

g(t)
∈ R, f ≺ g ⇐⇒ lim

t→+∞

f(t)

g(t)
= 0,

f ≍ g ⇐⇒ lim
t→+∞

f(t)

g(t)
∈ R×, f ∼ g ⇐⇒ lim

t→+∞

f(t)

g(t)
= 1.

2 The dominance relation≼ on the ordered differential field T
from above agrees with the one on T qua valued subfield of a
Hahn field R[[M]].



The T-Conjecture
This is the idea that T is a “universal” domain for asymptotic
differential algebra:

[The differential field T] marks an almost impassable hori-
zon for “ordered analysis”. (This sector of analysis is in some
sense “orthogonal” to harmonic analysis.) —J. Écalle

To formulate a precise version, we view ordered valued differential
fields model-theoretically as structures with the primitives

0, 1, +, ×, ∂ (derivation), ⩽ (ordering), ≼ (dominance).

The T-Conjecture
T is model complete.

� (The inclusion of≼ is necessary.)

Model completeness of T can be expressed geometrically in terms of
systems of algebraic differential (in)equations. (Similar to Gabrielov’s
“theorem of the complement” for real subanalytic sets.)



The T-Conjecture
For this, define a d-algebraic set in Tn to be a zero set{

y ∈ Tn : P1(y) = · · · = Pm(y) = 0
}

of some d-polynomials P1, . . . , Pm ∈ T{Y1, . . . , Yn}.
AnH-algebraic set in Tn is the intersection of a d-algebraic set in Tn

with a set{
(y1, . . . , yn) ∈ Tn : yi ≺ 1 for all i ∈ I

}
where I ⊆ {1, . . . , n}.

The image of anH-algebraic set in Tn, for some n ⩾ m, under the
natural projection Tn → Tm is called sub-H-algebraic.
Model completeness of Tmeans (almost):

the complement of any sub-H-algebraic set in Tm is again
sub-H-algebraic.

(A strengthening of model completeness is quantifier elimination: it
describes sub-H-algebraic sets using additional primitives on T.)



The T-Conjecture

To prove model completeness results algebraically, we need to
develop an extension theory for structures with the same basic
universal properties as the structure of interest.

This strategy can be employed to analyze the logical properties of
classical fields like C, R, C((t)), . . .

We do something similar for T.

For this we define the class ofH-fields (H : Hardy, Hausdorff, Hahn.)

The goal then is to show that the class of existentially closedH-fields
is axiomatizable in first-order logic, and contains T.

If successful, we have model completeness of T.

Here, anH-fieldH is existentially closed if every system of algebraic
differential equations and asymptotic conditions which has a solution
in someH-field extension ofH also has a solution inH .



H-fields
These are ordered differential fields in which ordering, dominance,
and derivation interact in a certain nice way:

Definition
LetH be an ordered differential field with constant field C = CH .
ThenH is anH-field if
(H1) f ≻ 1 ⇒ f † > 0;
(H2) f ≍ 1 ⇒ f ∼ c for some c ∈ C×;
(H3) f ≺ 1 ⇒ f ′ ≺ 1.

� (The usual definition of “H-field” doesn’t include (H3).)

Examples

• every Hardy fieldH ⊇ R;
• the ordered differential field T;
• each ordered differential subfield of anH-fieldH containing C.



H-fields

H-fields are part of the (more flexible) category of
“differential-valued fields” of Rosenlicht (1980s).

Many basic properties of the dominance relation valid in Hardy fields
are consequences of theH-field axioms.

For example, letH be anH-field; then:

l’Hôpital’s Rule
If 0 ̸= f, g ̸≍ 1, then f ≼ g ⇐⇒ f ′ ≼ g′.



H-fields

Besides being real closedH-fields, T and Li(R) are Liouville closed:
We call a real closedH-field Liouville closed if it satisfies

∀f, g ∃y
[
y ̸= 0 & y′ + fy = g

]
.

A Liouville closure of anH-fieldH is a minimal Liouville closed
H-field extension ofH .

Theorem (A.-v. d. Dries, 2002)
EveryH-fieldH has exactly one or exactly two Liouville closures, up
to isomorphism overH .

What can go wrong when forming Liouville closures may be seen
from the asymptotic couple ofH .

To explain this, let v : H× → Γ be the valuation ofH . We have a map

γ = vg 7→ γ′ = v(g′) : Γ ̸= = Γ \ {0} → Γ.

(As a consequence of l’Hôpital.)



Asymptotic couples

The pair consisting of Γ and the map γ 7→ γ† := γ′ − γ is called the
asymptotic couple ofH . Always (Γ̸=)† < (Γ>)′ .

Γ ↑

→ Γ
◦

γ′

γ† = γ′ − γ



Asymptotic couples

Exactly one of the following statements holds:
1 (Γ̸=)† < γ < (Γ>)′ for a (necessarily unique) γ.

We call such γ a gap inH .
2 (Γ̸=)† has a largest element.

We say thatH is grounded.
3 (Γ̸=)† has no supremum; equivalently: Γ = (Γ ̸=)′.

We say thatH has asymptotic integration.

Examples
1 H = C;
2 H = Texp;
3 H = T (or any other Liouville closedH).



Asymptotic couples

Exactly one of the following statements holds:
1 (Γ̸=)† < γ < (Γ>)′ for a (necessarily unique) γ.

We call such γ a gap inH .
2 (Γ̸=)† has a largest element.

We say thatH is grounded.
3 (Γ̸=)† has no supremum; equivalently: Γ = (Γ ̸=)′.

We say thatH has asymptotic integration.

In 1 we have two Liouville closures: if γ = vg, then we have a choice
when adjoining

∫
g: make it≻ 1 or≺ 1.

In 2 we have one Liouville closure: if vg = max (Γ ̸=)†, then
∫
g ≻ 1

in each Liouville closure ofH .

In 3 we may have one or two Liouville closures.



λ-freeness

EveryH-subfieldH ⊇ R of T has a unique Liouville closure.

The intrinsic reason for this: SupposeH ⊇ R(ℓ0, ℓ1, . . . ) and γ ∈ H

(or rather vγ) is a gap inH : (Γ<)† < vγ < (Γ>)′

Then vℓn is cofinal in Γ< and v(1/ℓn) is coinitial in Γ>,
hence v(ℓ†n) is cofinal in (Γ<)† and v((1/ℓn)′) is coinitial in (Γ>)′.

Now γn := ℓ†n =
1

ℓ0 · · · ℓn
, (1/ℓn)

′ = γn/ℓn,

hence γn ≻ γ ≻ (1/ℓn)
′ = γn/ℓn

and since λn := −γ
†
n =

1

ℓ0
+

1

ℓ0ℓ1
+ · · ·+ 1

ℓ0ℓ1 · · · ℓn
,

we get

λ := −γ
† =

1

ℓ0
+

1

ℓ0ℓ1
+

1

ℓ0ℓ1ℓ2
+· · ·+ 1

ℓ0ℓ1 · · · ℓn
+· · ·+smaller terms E



λ-freeness

This fact about T translates into a ∀∃-statement aboutH-fields:

Definition
An ungroundedH-fieldH is λ-free if there is no λ ∈ H such that

λ − g†† ≺ g† for each g ≻ 1 inH .

Theorem (A. Gehret, 2017)
AnH-field has a unique Liouville closure⇐⇒ it is grounded or λ-free.



ω-freeness

This is a stronger, and more robust, property than λ-freeness.

Just like λ-freeness has to do with solving first-order linear
differential equations, ω-freeness is connected to order 2 equations:

Examples (2nd order linear)

• y′′ = −y has no solution y ∈ T×;
• y′′ = xy has two R-linearly independent solutions in T:

Ai =
e−ξ

2π1/2x1/4

∑
n

(−1)n
an
ξn

Bi =
eξ

π1/2x1/4

∑
n

(−1)n
an
ξn

(ξ = 2
3x

3/2, an ∈ R).



ω-freeness

LetH be a Liouville closedH-field. For f ∈ H and y ∈ H×,

4y′′ + fy = 0 ⇐⇒ −4y′′/y = f ⇐⇒ ω(2y†) = f

where ω(z) := −(2z′ + z2)

(a relative of the Schwarzian derivative).

Hence

ω(H) =
{
f ∈ H : 4y′′ + fy = 0 for some y ∈ H×}.

The caseH = T
The sequence

ω(λn) =
1

ℓ20
+

1

(ℓ0ℓ1)2
+ · · ·+ 1

(ℓ0ℓ1 · · · ℓn)2

is cofinal in ω(T). Thus ω(T) has no supremum in T.



ω-freeness

γ = 1
ℓ0ℓ1···

λ = 1
ℓ0

+ 1
ℓ0ℓ1

+ · · ·

ω = 1
ℓ20

+ 1
(ℓ0ℓ1)2

+ · · ·

T

T
0

ω

Once again, this can be translated into a statement aboutH-fields:

Definition
Call an ungroundedH-fieldH ω-free if there is no ω ∈ H with

ω − ω(−g††) ≺ (g†)2 for each g ≻ 1 inH .



ω-freeness

ω-freeness is amazingly robust, and prevents deviant behavior:

IfH is ω-free, then
• so is every differentially algebraicH-field extension ofH ;
• H is λ-free, and hence has only one Liouville closure; . . .

The main engine behind this:

Newton polynomials of one-variable differential polynomials over
ω-freeH have a very simple shape.

The definition of Newton polynomials relies on compositional
conjugation.



Compositional conjugation

InH = T every differential polynomial P ∈ H{Y } can be
transformed, by applying finitely many transformations

f 7→ f↑ = f ◦ ex = f(ex) (upward shift),

into one with a “dominant part” of the form

(c0 + c1Y + · · ·+ cmY m) · (Y ′)n (c0, . . . , cm ∈ R).

GeneralH-fieldsH have no operation like f 7→ f↑.
But there is a substitute:

Compositional conjugation (in a d-fieldK with derivation ∂)

• Replacing ∂ by ϕ−1
∂ (ϕ ∈ K×) yields a new d-fieldKϕ, and

• rewriting P in terms of ϕ−1
∂ yields P ϕ ∈ Kϕ{Y } such that

P ϕ(y) = P (y) for all y ∈ K.



Compositional conjugation

Compare with composition in a Hardy fieldH :

Reminder from Part I
Let ℓ ∈ H>R and ϕ := ℓ′. Then ϕ > 0, and we have an ordered field
isomorphism

h 7→ h◦ := h ◦ ℓinv : H → H◦.

This is not a differential field isomorphism: since

(h◦)′ = (ϕ−1h′)◦,

it is rather a differential field isomorphismHϕ → H◦.



Compositional conjugation

The operation P 7→ P ϕ can be viewed as a triangular automorphism
of theK-algebraK{Y } = K[Y, Y ′, . . . ] = Kϕ{Y }:

Y ϕ = Y

(Y ′)ϕ = ϕY ′

(Y ′′)ϕ = ϕ2Y ′′ + ϕ′Y ′

(Y ′′′)ϕ = ϕ3Y
′′′
+ 3ϕϕ′Y ′′ + ϕ′′Y ′,

...

Such triangular automorphisms can be treated with Lie theoretic
methods: every triangular automorphism σ ofK{Y } can be
represented by an upper triangular matrixMσ ∈ KN×N, whose
matrix logarithm log(Mσ) represents aK-linear derivation ofK{Y }.



Newton polynomials

Suppose nowH is an ungroundedH-field.

We then only use active ϕ, those for whichHϕ is again anH-field:

ϕ > 0 and ϕ ≻ h′ for all h ≺ 1.

Theorem
Let P ∈ H{Y }̸=. Then there existsNP ∈ C{Y } ̸= so that for all
sufficiently small ϕ:

P ϕ = dNP +R, d ∈ H×, R ≺ d.

We callNP the Newton polynomial of P .

� (We omitted technical hypotheses to makeNP well-defined.)



Newton polynomials

It is not always the case (like in T) thatNP ∈ C[Y ](Y ′)N. Consider

P = N − ω · (Y ′)2 whereN := 2Y ′Y ′′′ − 3(Y ′′)2.

Then for ϕ = γn = 1
ℓ0ℓ1...ℓn

:

P ϕ = ϕ4N + (2ϕϕ′′ − 3(ϕ′)2 − ωϕ2)︸ ︷︷ ︸
(ω(λn)− ω)ϕ2

·(Y ′)2

where ω(λn)− ω = 1
(ℓ0···ℓn+1)2

+ · · · ≺ ϕ2

and so P ϕ ∼ ϕ4N , thusNP = N . However (!):

Theorem
H ω-free ⇐⇒ NP ∈ C[Y ](Y ′)N for all P ∈ H{Y } ̸=.

The proof relies on the Lie algebra approach to compositional
conjugation mentioned above.



Newtonianity

The Newton degree of P is defined as ndegP := degNP .

IfH is ω-free, thenNP (and hence ndegP ) doesn’t change if we
pass fromH to anH-field extension.

Definition
We say thatH is newtonian if every P ∈ H{Y }̸= with ndegP = 1
has a zero y ≼ 1 inH .

T is newtonian (as a directed of grounded HahnH-subfields).

This is themost significant asymptotic-differential-algebraic property
of T, and the appropriate differential version of the henselian
property of valuation theory.



Newtonianity

It guarantees, for example, that the Painlevé II equation

y′′ = 2y3 + xy + α (α ∈ R)

has a solution in y ≼ 1 in T: with

P := Y ′′ − 2Y 3 − xY − α ∈ T{Y },

for ϕ ≺ 1 we have

P ϕ = ϕ2Y ′′ + ϕ′Y ′ − 2Y 3 − xY − α where ϕ2, ϕ′ ≺ 1 ≺ x.

ThusNP ∈ R×Y , so ndegP = 1.

(It is known that P has a zero y ≼ 1 in R(x) ⊆ T iff α ∈ Z.)



Newtonianity

We chose the adjective “newtonian” since this property allows us to
develop a Newton diagram method for differential polynomials over
H-fields (among others).

(from a letter of Isaac Newton to Henry Oldenburg, Oct. 24, 1676)



Newtonianity

Theorem (sample application of differential Newton diagrams)

Every odd-degree differential polynomial over a real closed ω-free
newtonianH-field has a zero.

For all this (and more), see our book −→

Don’t forget to check out
https://tinyurl.com/ADH-errata

https://tinyurl.com/ADH-errata


Outlook

In the next lecture we will discuss further properties and uses of
newtonianity.

We will then combine the three crucial features of T,

Liouville closedness, ω-freeness, and newtonianity

to unravel (a more precise version of) the T-Conjecture, and describe
its various consequences.

Then we will return to the world of Hardy fields.
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IV. Model theory of transseries



Reminder about yesterday

From the last lecture recall:

AnH-field is an ordered differential fieldH such that:
(H1) f ≻ 1 ⇒ f † > 0;
(H2) f ≍ 1 ⇒ f ∼ c for some c ∈ C×;
(H3) f ≺ 1 ⇒ f ′ ≺ 1.

Examples: ordered differential subfields⊇ R of T; Hardy fields⊇ R.

LetH be anH-field, f, g ∈ H×. We have f † ≻ g′ if f, g ≺ 1.

Three flavors ofH-fields
• grounded: there is an f ≺ 1 such that g† ≽ f † for all g ≺ 1;
• with a gap: there is a γ with f † ≻ γ ≻ g′ for all f, g ≺ 1;
• asymptotic integration: for each f there is g with g′ ≍ f .



Reminder about yesterday

We call a real closedH-field Liouville closed if all equations

y′ = f and z† = g (z ̸= 0)

have solutions. (Examples: T.)
A Liouville closure of anH-fieldH is a minimal Liouville closed
H-field extension ofH . (Example: Li(H) for a Hardy fieldH ⊇ R.)
EveryH-fieldH has one or two Liouville closures.

ω-freeness
A nice property of an ungroundedH-fieldH that guarantees:
• H has asymptotic integration and a unique Liouville closure;
• the Newton polynomial of each P ∈ H{Y }̸= has a simple
shape.

ω-freeness is preserved under d-algebraicH-field extensions:
anH-field extension E ofH is differentially algebraic (d-algebraic) if
for each y ∈ E there is a P ∈ H{Y } ̸= with P (y) = 0.



Reminder about yesterday

LetH be an ungroundedH-field and C = CH , Γ = ΓH .

Let P ∈ H{Y }̸=.

• Newton polynomialNP ∈ C{Y }̸= of P :
for sufficiently small (“active”) ϕ,

P ϕ ∼ d ·NP where d = dϕ ∈ H×;

• Newton degree of P : ndegP := degNP .

We say thatH is newtonian if every P ∈ H{Y }̸= with ndegP = 1
has a zero y ≼ 1. (Mostly useful in combination with ω-freeness.)

Our first aim: to extendH to a newtonianH-field.



Newtonization

AnH-field extension E ofH is immediate if CE = C and ΓE = Γ:
for each g ∈ E× there is an h ∈ H× with g ∼ h.

One can show thatH has an immediateH-field extension which is
maximal, i.e., has no proper immediateH-field extension.

The proof of the next important fact uses the full machinery of
Newton diagrams, including its most complicated part (differential
Tschirnhaus transformations) to deal with “almost multiple zeros”.

Theorem (characterization of newtonianity for ω-freeH)

H is newtonian ⇐⇒
{

H has no proper immediate d-alge-
braicH-field extension.

(We assumed Γ divisible; general version is due to N. Pynn-Coates.)



Newtonization

The previous theorem implies that eachH-field can be embedded
into a newtonianH-field. We now want to do this in a minimal way.

Definition
A newtonization ofH is a newtonian extension ofH which embeds
overH into each newtonian extension ofH .

Theorem
SupposeH is ω-free. ThenH has a newtonization. Moreover, ifN is
a newtonization ofH , then
• N is an immediate extension ofH ;
• no proper ordered differential subfield ofN containingH is
newtonian.

We note the following important consequence.



Newton-Liouville closure

Corollary
IfH is ω-free, thenH has a newtonian Liouville
closedH-field extensionHnl which embeds
overH into each newtonian Liouville closed
H-field extension E ofH .

E

Hnl

77

H

⊆

OO
⊆

CC

(By alternating newtonization with taking Liouville closures.)

We callHnl the Newton-Liouville closure ofH .
(Unique up to isomorphism overH .)

The Newton-Liouville closureHnl ofH is d-algebraic overH , and its
constant field is real closed and algebraic overH .



ClosedH-fields

Definition
Call anH-field closed if it is Liouville closed, ω-free, and newtonian.

Thus everyH-field extends to a closed one, and T is closed.
An important fact characterization of closedH-fields:

Theorem (“no new constants”)

H is closed ⇐⇒

{
C is real closed andH has no proper
d-algebraic H-field extension with
constant field C.

(For a generalization of⇒, and caveats about applying the theorem,
see Relative differential closure in Hardy fields, arXiv:2412.10764.)

Example
TheH-subfield R(ℓ0, ℓ1, . . . ) of T is ω-free. Its Newton-Liouville
closure inside T is Tda :=

{
f ∈ T : f is d-algebraic overQ

}
.



Proof of the T-Conjecture
Let L = {0, 1,+, · , ∂,⩽,≼} and let

T = the L-theory of closedH-fields,

that is, the L-theory axiomatized by
• the axioms for Liouville closedH-fields;
• the ω-freeness axiom; and
• the axiom scheme of newtonianity.

T-Conjecture, revised version
T is model complete.

This can be phrased in terms of sub-H-algebraic sets like the first
version of the T-Conjecture. Alternatively: ifH is a closedH-field,
then each system of finitely many conditions

P (Y ) ϱ Q(Y )

{
where P,Q ∈ H{Y } = H{Y1, . . . , Yn} and ϱ
is one of the symbols=, ̸=,⩽,<,≼,≺,

which has a solution in someH-field extension ofH , has one inH .



Proof of the T-Conjecture

Theorem (main result of our book)
The refined T-Conjecture is true!

We explain the proof strategy. By a model completeness test of
A. Robinson, it suffices to solve the following embedding problem:

E∗

E

55

H

⊆

OO
i

@@
LetH be an ω-freeH-subfield of some closedE.

Let i be an embedding ofH into a “very rich”
closedH-field E∗. Then i extends to an
embedding E ↪→ E∗.

We first make some preliminary reductions. First, we can extend i to
an embeddingH(CE) ↪→ E∗. SinceH(CE) is d-algebraic overH , it
remains ω-free.



Proof of the T-Conjecture

Theorem (main result of our book)
The refined T-Conjecture is true!

We explain the proof strategy. By a model completeness test of
A. Robinson, it suffices to solve the following embedding problem:

E∗

E

55

H

⊆

OO
i

@@
LetH be an ω-freeH-subfield of some closed E
such that C = CE .

Let i be an embedding ofH into a “very rich”
closedH-field E∗. Then i extends to an
embedding E ↪→ E∗.

Next, suppose there is a y ∈ E with C < y < H>C . ThenH⟨y⟩ is
grounded, but it extends to an ω-freeH-field

“H⟨y⟩ω = H⟨y, log y, log log y, . . .⟩”
in a canonical way. Now i extends to an embeddingH⟨y⟩ω ↪→ E∗.



Proof of the T-Conjecture

Theorem (main result of our book)
The refined T-Conjecture is true!

We explain the proof strategy. By a model completeness test of
A. Robinson, it suffices to solve the following embedding problem:

E∗

E

55

H

⊆

OO
i

@@
LetH be an ω-freeH-subfield of some closed E
such that C = CE andH>C is coinitial in E>C .

Let i be an embedding ofH into a “very rich”
closedH-field E∗. Then i extends to an
embedding E ↪→ E∗.

This has the nice consequence that now we don’t need to worry
about preserving ω-freeness anymore: every differential subfield
of E containingH is an ω-freeH-subfield of E.



Proof of the T-Conjecture

Theorem (main result of our book)
The refined T-Conjecture is true!

We explain the proof strategy. By a model completeness test of
A. Robinson, it suffices to solve the following embedding problem:

E∗

E

55

H

⊆

OO
i

@@
LetH be an ω-freeH-subfield of some closed E
such that C = CE andH>C is coinitial in E>C .

Let i be an embedding ofH into a “very rich”
closedH-field E∗. Then i extends to an
embedding E ↪→ E∗.

ReplacingH byHnl ⊆ E we can further assume thatH is closed.
Then each y ∈ E \H is d-transcendental overH , and the
isomorphism type ofH⟨y⟩ overH is (essentially) determined by the
cutH<y = {f ∈ H : f < y} of y in the ordered setH .



Consequences of the T-Conjecture, 1

Corollary

1 any two closedH-fields are elementarily equivalent; hence
2 T is decidable.

Proof.
Part 1 is an immediate consequence of the T-Conjecture and the
fact that Tda embeds into every closedH-field. Part 2 follows
from 1 and Gödel’s Completeness Theorem.

An instance of 2 : there is an algorithm which, given d-polynomials

P1, . . . , Pm ∈ Q(x){Y1, . . . , Yn},

decides whether P1(y) = · · · = Pm(y) = 0 for some y ∈ Tn.

(Not true for Texp!)



Strengthening the T-Conjecture

Recently E. Kaplan established a version of the T-Conjecture when T
is also equipped with (c, f) 7→ f c : R× T> → T>.

(But we do not know whether a version of the T-Conjecture holds
when T is expanded to an Lan,exp-structure.)

We remark that we obtained the T-Conjecture in a strengthened
form (quantifier elimination in a slight extension of our language L).

Rather than explaining this strengthening, we will discuss a few of its
remarkable consequences for T.



Consequences of the T-Conjecture, 2

Corollary

1 T is o-minimal at+∞: ifX ⊆ T is sub-H-algebraic, then there
is an f ∈ T with (f,+∞) ⊆ X or (f,+∞) ∩X = ∅.

2 All sub-H-algebraic subsets of Rn ⊆ Tn are semialgebraic.

Special case of 1 : if P ∈ T{Y }, then there are f ∈ T and σ ∈ {±1}
with signP (y) = σ for all y > f . (Related to results of Borel, Hardy.)

An illustration of 2 : the set of (c0, . . . , cn) ∈ Rn+1 such that

c0y + c1y
′ + · · ·+ cny

(n) = 0, 0 ̸= y ≺ 1

has a solution in T is a semialgebraic subset of Rn+1.



Back to Hardy fields

We already learned: each Hardy fieldH extends to the Liouville
closed Hardy field Li

(
H(R)

)
. With more work (arXiv:2404.03695):

H also extends to an ω-free Hardy field⊇ R.
Using Newton-Liouville closures (and results from our QE), this yields:

Corollary (extending expansion operators)

Let E be a d-algebraic Hardy field extension of a Hardy fieldH . Then
every embeddingH → T extends to an embedding E → T.

As a consequence of this and a theorem of Lion-Miller-Speissegger,
the Hardy field of the Pfaffian closure of the ordered field of
real numbers embeds into Tda.

Question
LetH(R) be the Hardy field of an o-minimal expansionR of the
ordered field of reals with Pfaffian closure Pf(R). Does each
embeddingH(R)→ T extend to an embeddingH

(
Pf(R)

)
→ T?



Closed Hardy fields

It is natural to wonder:
are there Hardy fields⊇ R which are closedH-fields?

Definition
A Hardy field is d-maximal if it has no proper d-algebraic Hardy field
extension.

Maximal Hardy fields (with respect to inclusion) are d-maximal, and
d-maximal Hardy fields contain R (thus areH-fields) and are Liouville
closed and ω-free.
Boshernitzan (1986):

each y ∈ C2 with y′′+y = ex
2 is hardian, and every d-maximal

Hardy field contains a solution y to this equation.

(So there are at least 2ℵ0 many maximal Hardy fields; in fact, later it
turned out that there are exactly 22ℵ0 many.)



Closed Hardy fields

Here is the fundamental fact about d-maximal Hardy fields:

Theorem (characterizing d-maximal Hardy fields)

LetH be a Hardy field. Then

H is d-maximal ⇐⇒ H ⊇ R andH is closed.

Combining it with known properties of closedH-fields substantiates
this as the “ultimate” d-algebraic extension theorem for Hardy fields:

Corollary
LetH be a Hardy field and P ∈ H{Y }, P /∈ H .

1 There are y, z in a Hardy field extendingH with P (y + zi) = 0.
2 If P has odd degree, then there is some y in a Hardy field

extension ofH with P (y) = 0.

Thus for example, there is some y satisfying

(y′′)5 +
√
2 ex (y′′)4y′′′ − x log x y2y′′ + yy′ − erf = 0

in a Hardy field containing R, ex, log x, erf!



Closed Hardy fields
For a proof of this theorem see arXiv:2408.05232.

We give a rough outline in the next lecture, together with some
applications and extensions.

In the remainder of this lecture we prepare the ground by talking a
bit about linear differential operators overH-fields.



Linear differential operators

LetK be a differential field and C = CK . We put

K[∂] = the ring of linear differential operators overK.

Formally,K[∂] is a ring containingK as a subring, with a
distinguished element ∂, such that asK-vector space,

K[∂] = K ⊕K∂⊕K∂
2 ⊕ · · ·

and

∂a = a∂ + a′ for all a ∈ K.

Every A ∈ K[∂] can be written as

A = a0 + a1∂ + · · ·+ ar∂
r (a0, . . . , ar ∈ K, r ∈ N).

If ar ̸= 0, then A has order r, and if ar = 1, then A is calledmonic.
With order(0) := −∞, we have

order(AB) = order(A) + order(B) for all A,B ∈ K[∂].



Linear differential operators

Call A of positive order irreducible if there are no A1, A2 ∈ K[∂] of
positive order with A = A1A2. Each A of positive order factors as

A = A1 · · ·An with irreducible A1, . . . , An ∈ K[∂].

LetR be a differential ring extension ofK. With A as above we
obtain a C-linear operator

y 7→ A(y) := a0y + a1y
′ + · · ·+ ary

(r) : R→ R.

Multiplication inK[∂] ←→ composition of C-linear operators:

(AB)(y) = A
(
B(y)

)
for A,B ∈ K[∂] and y ∈ R.

The kernel of A ∈ K[∂] acting as C-linear operator onR,

kerR A :=
{
y ∈ K : A(y) = 0

}
,

is aC-linear subspace ofR, with dimkerK A ⩽ r if 0 ⩽ orderA ⩽ r.



Linear differential operators

The following are the main results about linear differential operators
overH-fields. For this letH be a closedH-field andK := H[i],
equipped with the unique derivation extending that ofH .

Theorem (factorization of operators)
Every irreducible element ofK[∂] has order 1. As a consequence,
if A ∈ H[∂] is irreducible, then A has order 1 or order 2.

Proof.
Let A ∈ K[∂] have order r ⩾ 1. There existsR ∈ K{Z} \K (the
Riccati transform of A) of order r − 1 such that

A(y)

y
= R(z) for each unit y of a d-ring⊇ K and z = y†.

SinceH is closed, we can take some z ∈ K withR(z) = 0; then we
have A = B · (∂− z) for someB ∈ K[∂].



Linear differential operators

Hence in order to establish the newtonianity of d-maximal Hardy
fields, we will have to, in particular, deal with factoring linear
differential operators over complexified Hardy fieldsK = H[i].

This actually turns out to be a key tool for proving the
characterization of d-maximal Hardy fields.

The final fact for today uses only thatK, equipped with the
dominance relation extending that ofH (a d-valued field in the sense
of Rosenlicht) is newtonian, in the natural sense:

Theorem (linear surjectivity)

Let A ∈ K[∂]̸=. Then for each b ∈ K there is a y ∈ K with A(y) = b.
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V. Maximal Hardy fields



Recap from yesterday

Recall that
• anH-field is closed if it is Liouville closed, ω-free, newtonian;
• a Hardy field is d-maximal if it has no proper d-algebraic Hardy
field extension.

At the end of yesterday’s lecture we met the fundamental

Characterization of d-maximality
LetH be a Hardy field. Then

H is d-maximal ⇐⇒ H ⊇ R andH is closed.

⇐ Follows from the “no new constants” theorem, also discussed
yesterday.

⇒ Amounts to showing that each Hardy field has a d-algebraic
Hardy field extensionH ⊇ R which is closed.
Today we tackle this remaining task:



Constructing newtonian Hardy fields

Theorem
Every ω-free Hardy field has a newtonian Hardy field extension.

Recall: an ungroundedH-fieldH is newtonian if every P ∈ H{Y }̸=
with ndegP = 1 has a zero y ≼ 1 inH .

This notion, and ω-freeness, also make sense (and have equally nice
properties) for d-valued fields such asK = H[i] for anH-fieldH :

Definition (� nonstandard!)
A valued d-fieldK with C = CK is d-valued if for f, g ∈ K×:
(H1′) f ≼ g ≺ 1 ⇒ g′ ̸= 0 & f

g − f ′

g′ ≺ 1 & f † ≽ g†;

(H2) f ≍ 1 ⇒ f ∼ c for some c ∈ C×;
(H3) f ≺ 1 ⇒ f ′ ≺ 1.



Holes

LetK be an ω-free d-valued field.

Definition
A hole inK is a triple (P,m, f̂) where

• P ∈ K{Y } \K,
• m ∈ K×, and
• f̂ ∈ K̂ \K for an immediate d-valued field extension K̂ ofK,

such that P (f̂) = 0 and f̂ ≺ m.

The order and complexity of a hole (P,m, f̂) inK are those of P .
A hole inK isminimal if no hole inK has smaller complexity; these
are “minimal counterexamples” to non-newtonianity, since:

K newtonian ⇐⇒ K has no holes.

(Stated for ω-freeH-fields in the last lecture.)



The general strategy
LetH ⊇ R be an ω-free Liouville closed Hardy field which is not
newtonian. To show:

H has a proper d-algebraic Hardy field extension.

Take a minimal hole (P,m, f̂) inH , and arrangem = 1. Then
• r := orderP ⩾ 1;
• P ∈ H{Y } \H is aminimal annihilator of f̂ overH

(i.e., of minimal complexity such that P (f̂) = 0);
• H is (r − 1)-newtonian: “newtonian up to order r − 1”.

We try to find f in a Hardy field ⊇ H and a ordered differential
field isomorphismH⟨f⟩

∼=−−→ H⟨f̂⟩ overH with f 7→ f̂ .

So at the very least:

We need some f ∈ C<∞ with P (f) = 0 and f ≺ 1!



Smoothness considerations

Let SP :=
∂P

∂Y (r)
(the separant of P ), so degY (r) SP < degY (r) P .

Proposition (automatic smoothness)
Let f ∈ Cr (so P (f) ∈ C makes sense). If P (f) = 0 and SP (f) ∈ C×,
then f ∈ C<∞.

(Similarly with C∞ or Cω in place of C<∞, providedH is a C∞-Hardy
field or a Cω-Hardy field.)

Relevant case: “almost linear” P
Suppose

P = Q+R whereQ = Y (r)+g1Y
(r−1)+ · · ·+g0Y andR ≺ 1.

If f ∈ Cr with P (f) = 0 and f, f ′, . . . , f (r) ≼ 1, then f ∈ C<∞.

(Since then SP (f) ∼ 1 and so SP (f) ∈ C×.)



Normalization

We consider various operations on holes inH , such as
replace (P,m, f̂) by (P+f ,m, f̂ − f) where f ∈ H satis-
fies f̂ − f ≺ m, and P+f (Y ) := P (Y + f),

to transform our given hole inH into a hole (P, 1, f̂) inH where P
has a nice shape as in the “relevant case” above (and more).
Normalization procedures of this kind are the subject of our
monograph arXiv:2403.19732.

ar
X

iv
:2

40
3.

19
73

2v
1 

 [m
at

h.
A

C
]  

28
 M

ar
 2

02
4

A NORMALIZATION THEOREM

IN ASYMPTOTIC DIFFERENTIAL ALGEBRA
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Abstract. We define the universal exponential extension of an algebraically
closed differential field and investigate its properties in the presence of a nice
valuation and in connection with linear differential equations. Next we prove
normalization theorems for algebraic differential equations over H-fields, as
a tool in solving such equations in suitable extensions. The results in this
monograph are essential in our work on Hardy fields in [6].
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Inverting the linear part

Let L = LP :=

r∑
i=0

(
∂P

∂Y (i)

)
(0) ∂i ∈ H[∂] (the linear part of P ).

Can also arrange that orderL = r and L is monic. We now make a

Bold assumption: L splits (strongly) overH

L = (∂ − ϕ1) · · · (∂ − ϕr) for some ϕj ∈ H with ϕj ≽ 1.

For a suitable a ∈ R, representing the coefficients of P by functions
in Ca we obtain an R-linear operator y 7→ L(y) : Cr

a → Ca. Here

Cr
a :=

{
R-linear space of r-times continuously differen-
tiable functions [a,+∞) → R.

Using our strong splitting of L, by suitable r-fold integrations we
obtain a “good”R-linear right inverse L−1 : Ca → Cr

a of this operator:

L
(
L−1(y)

)
= y for all y ∈ Ca.



Inverting the linear part

More precisely, consider the R-linear subspace

(Cr
a)

≼ :=
{
f ∈ Cr

a : ∥f∥, ∥f ′∥, . . . , ∥f (r)∥ <∞
}

of Cr
a, where ∥ · ∥ is the sup norm on Ca. Equipped with the norm

f 7→ ∥f∥r := max
{
∥f∥, ∥f ′∥, . . . , ∥f (r)∥

}
,

this is a Banach space, and “good” roughly means that L−1 : Ca → Cr
a

restricts to a continuous operator (Ca)≼ → (Cr
a)

≼.

Next we convert the problem of solving

P (y) = 0, y ≺ 1

in (Cr
a)

≼ into a fixed point problem:



Computing a fixed point
Write

P = P1 −R where P1 := homogeneous part of degree 1 of P

and consider the (generally non-linear) operator

f 7→ Ψ(f) := L−1
(
R(f)

)
: Cr

a → Cr
a.

Then

Ψ(f) = f =⇒ R(f) = L(f) = P1(f) =⇒ P (f) = 0.

Now if

•Ψ(f) ≺ 1 for each f ∈ (Cr
a)

≼, and
•Ψ restricts to a contractive operator on a closed ball of (Cr

a)
≼,

sayB :=
{
f ∈ Cr

a : ∥f∥r ⩽ 1/2
}
,

then we get a fixed point f ∈ B ofΨ with f ≺ 1 as required.
These hypotheses can be achieved with the right kind of
normalization theorem and suitably modifying the definition ofΨ.



Passing to the complex realm

� There is a problem with our “bold assumption”:

Lmight not split overH , or even overK = H[i].

To get around this, we use: K is also ω-free and non-newtonian.

So instead of a hole of minimal complexity inH , we let (P,m, f̂) be a
hole of minimal complexity inK.

We can arrange here that f̂ = ĝ + ĥi with ĝ, ĥ ≺ 1 in an immediate
H-field extension ofH . Then ĝ /∈ H or ĥ /∈ H , say ĝ /∈ H .

As before we get r := orderP ⩾ 1, P is a minimal annihilator of f̂
overK, andK is (r − 1)-newtonian. We also arrange thatm = 1
and the linear part LP ∈ K[∂] of P has order r. Now indeed:

LP splits overK.

(SinceK is algebraically closed, ω-free, and (r − 1)-newtonian.)



Back to the real world

Our fixed point construction then adapts to produce a germ

f = g + hi (g, h ∈ C<∞) with P (f) = 0, f ≺ 1.

LetQ be a minimal annihilator of ĝ overH . We face a new problem:

We cannot expect thatQ(g) = 0.

If LQ ∈ H[∂] splits overK, then we can try to apply fixed point
arguments like the ones above, with (P, 1, f̂) replaced by the
hole (Q, 1, ĝ) inH , to find a zero y ∈ C<∞ ofQ.

Unfortunately we only know that 1 ⩽ s ⩽ 2r for s := orderQ, and
we may have s > r.

/ So we cannot ensure that LQ splits over K, or to normal-
ize (Q, 1, ĝ) as we indicated above for (P, 1, f̂).



A way out

Consider LQ+ĝ
∈ Ĥ[∂] (which also has order s).

A differential-algebraic fact to the rescue:

If LP
+f̂

splits over K̂, then so does LQ+ĝ
.

The hypothesis here holds ifH is dense in Ĥ (in the sense of≼):
for all ŷ ∈ Ĥ and ε ∈ H× there is a y ∈ H with y − ŷ ≺ ε.

In fact, if g ∈ H is only sufficiently close to ĝ, then LQ+g ∈ H[∂] is
close to an operator inH[∂] that does split overK.

Idea
Use (Q+g, 1, ĝ − g) instead of (Q, 1, ĝ).



A way out

This almost works, but:

We can neither expect that H is dense in Ĥ , nor that the
hole (Q, 1, ĝ) inH is minimal.

Fortunately, to get around this we can instead
• use that ĝ is the limit of an “almost” cauchy sequence inH ;
• in the definition of “hole” inH relax the conditionQ(ĝ) = 0.

Now suppose we finally find g ∈ C<∞ such thatQ(g) = 0 and g ≺ 1.

We need to adjoin g toH :



Enlarging the Hardy field

To show

The germ g generates a Hardy field H⟨g⟩ isomorphic to H⟨ĝ⟩
by an isomorphism overH with g 7→ ĝ.

The zeros g, ĝ ofQmust have similar asymptotic properties w. r. t.H :

Example (we need to show much more, of course)

h, n ∈ H & ĝ − h ≺ n =⇒ g − h ≺ n.

Now (g − h)/n and (ĝ − h)/n ≺ 1 are zeros ofQ+h,×n ∈ H{Y }.
The Fixed Point Theorem also yields a zero y ≺ 1 ofQ+h,×n in C<∞.
Then g and g1 := yn+ h both solve the asymptotic equation

Q(Y ) = 0, Y ≺ 1. (E)

If we can get g − g1 ≺ n then g−h = (g− g1)+ yn ≺ n as needed.



Enlarging the Hardy field

Call a germ ϕ ∈ C small if ϕ ≺ n for all n ∈ H× with ĝ − h ≺ n for
some h ∈ H . Thus we need to show:

differences of solutions to (E) in C<∞ are small.

Simple estimates coming out of the proof of the Fixed Point Theorem
are not enough. We need

• a generalization of the Fixed Point Theorem for weighted norms
(instead of ∥ · ∥r) with weight given by a representative of n;

• a construction of right-inverses of linear differential operators
which is “uniform in n”.

We use this to show:
each difference ϕ of solutions to (E) give rise to a zero z ≺ 1
of A in C<∞[i] whose smallness implies that of ϕ.

Here A ∈ H[∂] is a linear differential operator of order s which
approximates LQ and splits overK, implicit in the above.



Enlarging the Hardy field

To ensure that all zeros of this operator A are small requires another
normalization procedure on (Q, 1, ĝ).

To make all this work, we also need to study the asymptotics of zeros
of linear differential operators which split overK.

For this we rely on a theorem of Boshernitzan on uniform distribution
mod 1 of hardian germs, combined with a structure theorem for the
kernel kerC<∞[i]A of A.

Rather than going into more detail, we now conclude this sketch of
the characterization of d-maximality, and just formulate the relevant
structure theorem, in the case of matrix linear differential equations
over d-maximalH :



Solution spaces of linear differential equations

Generalizing a fundamental theorem about holonomic functions:

Theorem (assumingH is d-maximal)

LetM be an n× nmatrix overK := H[i]. Then the C-linear space
of solutions (in C<∞[i]) to the linear differential equation y′ =My
has a basis

f1 e
ϕ1i, . . . , fn e

ϕni where fj ∈ Kn, ϕj ∈ H (j = 1, . . . , n).

The ϕ′ji are “eigenvalues” of y′ =My.
Can arrange here ϕj = 0 or ϕj ≻ 1, and ϕi = ϕj or ϕi − ϕj ≻ 1.
IfM has suitable symmetries, then we can also guarantee the
existence of a nonzero solution which lies inKn (and hence is
non-oscillatory): e.g., ifM is skew-symmetric and n is odd.



The order 2 case

Corollary (conjectured by Boshernitzan, 1982)

LetH be a Hardy field and a, b ∈ H , and suppose the equation

y′′ + ay′ + by = 0 (L)

has an oscillating solution (in C2). Then there are germs g > 0
and ϕ > R in a Hardy field extension ofH such that

y is a solution of (L) ⇐⇒ y = cg cos(ϕ+ d) for some c, d ∈ R.

In favorable situations (e.g., whenH is ω-free), g, ϕ are unique up
constants, and contained in each maximal Hardy field containingH .



The example of the Bessel equation

x2Y ′′ + xY ′ + (x2 − ν2)Y = 0 (Bν )

Corollary
There is a unique germ ϕ = ϕν in some Hardy field with ϕ− x ≼ 1/x
such that the solutions of (Bν ) are exactly the germs of the form

y =
c√
xϕ′

cos(ϕ+ d) (c, d ∈ R).

The “phase function” ϕν is Liouvillian⇔ ν ∈ 1
2 + Z, and then

ϕ = x+

m∑
j=1

arctan
( aj
x−bj

)
for distinct pairs (aj , bj) ∈ R× × R.



The example of the Bessel equation
We have an asymptotic expansion

ϕν ∼ x+ µ−1
8 x−1 + µ2−26µ+25

384 x−3 + µ3−115µ2+1187µ−1073
5120 x−5 + · · ·

with µ = 4ν2.

We obtain this by verifying that ψ = 1/ϕ′ satisfies an order 3 linear
differential equation

ψ′′′ + fψ′ + (f ′/2)ψ = 0, ψ ∼ 1, f := 4 + (1− µ)x−2.

There is a unique solution to this equation-with-asymptotic-side-
condition in T, which can be easily computed explicitly, namely the
one on the right-hand side of the asymptotic expansion for ϕν above.

Now embed the Hardy field R⟨x, ϕ⟩ into T over R(x) using the
expansion theorem from the last lecture.

(This can be used to prove facts about the Bessel functions—certain
distinguished solutions to (Bν )—in a complex-analysis-free way.)



Dependence on constant coefficients

Many properties of the solutions of A(y) = 0 are typically definable
in the coefficients of A ∈ H[∂]. For example, let

b1, . . . , br ∈ H[Z] = H[Z1, . . . , Zm].

For c ∈ Rm we then obtain a linear differential equation overH(R):

y(r) + b1(c)y
(r−1) + · · ·+ br(c)y = 0 (Lc)

Corollary (using a result from last lecture)

The set of all c ∈ Rm such that no solution y ∈ Cr of (Lc) oscillates is
semialgebraic.

Cauchy-Euler equation,H = R(x)

y′′ + cx−1y′ + dx−2y = 0 (c, d ∈ R)
has no nonzero oscillating solution

}
⇐⇒ (c− 1)2 ⩾ 4d.



Analytic Hardy fields

Reminder
A Cω-Hardy field (also called an analytic Hardy field) is a Hardy
fieldH ⊆ Cω. (These are the ones of interest for most applications.)

LetM be amaximal Cω-Hardy field, i.e., a Cω-Hardy field which is
maximal with respect to inclusion among Cω-Hardy fields.

By our characterization of d-maximality and automatic smoothness,
M contains R and is a closedH-field.
Hence each system of finitely many conditions

P (Y ) ϱ Q(Y )

{
where P,Q ∈M{Y } =M{Y1, . . . , Yn} and ϱ
is one of the symbols=, ̸=,⩽,<,≼,≺,

which has a solution in a Hardy field extension ofM , has one inM .

(Likewise with C∞ in place of Cω.)



Analytic Hardy fields

We do not know whetherM is also a maximal Hardy field!

Nevertheless:
M is dense in each of its Hardy field extensions.

Like the results to follow, this ultimately relies on Whitney’s
Approximation Theorem.

Maximal Cω-Hardy fields are very rich. To make this precise, we call
an ordered set short if it contains no uncountable subset which is
well-ordered or reverse well-ordered. (Example: R.)

Theorem (A.-van den Dries, 2025+)
Every shortH-field with archimedean constant field embeds intoM .

In particular, every Hardy field which is countably generated over its
constant field embeds intoM .



Analytic Hardy fields

We already know: theH-field Tda of differentially algebraic
transseries embeds intoM . But since T is short,M even supports a
“summation operator” defined on all of T:

Corollary
T embeds intoM .

This is a Hardy field version of Besicovitch’s analytic strengthening of
Borel’s theorem on C∞-functions with prescribed Taylor series.

The key to the results above is an understanding of singly generated
(d-transcendental) Hardy field extensionsH⟨y⟩ ⊇ H where y is of
countable type overH :

the cofinality ofH<y and coinitiality ofH>y are countable.

This extends earlier results of Boshernitzan and Sjödin mentioned in
the first lecture (the case y > H). The proof is supported by a careful
analysis of singly-generated extensions of asymptotic couples.



Open questions

We finish with some open

Questions

1 Is there a maximal Hardy field which is closed under
composition? Under compositional inversion? [Boshernitzan]

2 Is there a Hardy fieldH which is closed under composition and
an embedding T → H which respects composition?
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